Getting back what was lost in the era
of high-speed software packet processing

Marcelo Abranches
University of Colorado Boulder
made0661@colorado.edu

Abstract

The need for high performance and custom software-based
packet processing has resulted in decades of research. Most
proposals bypass or replace the Linux networking stack with
the unfortunate consequence of sacrificing the rich and ro-
bust functionality available within Linux and the ecosystem
of management programs and control-plane software built
on top of it. In this paper, we propose to rethink the design of
the Linux network stack to address its shortcomings rather
than creating alternative pipelines. This re-design involves
(1) decomposing packet processing into a fast path and a
slow path, and (2) transparently and dynamically creating a
custom fast path that only implements the processing tasks
currently configured. We leverage Linux’s eXpress Data Path
to load efficient and small fast-path modules, leaving the ker-
nel stack to serve as the slow path. To materialize this vision,
this paper introduces Transparent Network Acceleration
(TNA), a prototype system that automatically generates a
minimal data path based on introspection of the current net-
working configuration, avoiding many of the networking
stack overheads in Linux while ensuring high performance
and maintaining Linux’s rich set of functionalities.

CCS Concepts

« Networks — Programmable networks;

Keywords

Middlexboxes, NFV, Network Management, Network Stacks.

ACM Reference Format:

Marcelo Abranches, Oliver Michel, and Eric Keller. 2022. Getting
back what was lost in the era of high-speed software packet process-
ing. In The 21st ACM Workshop on Hot Topics in Networks (HotNets
’22), November 14-15, 2022, Austin, TX, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3563766.3564114

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotNets 22, November 14-15, 2022, Austin, TX, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9899-2/22/11.
https://doi.org/10.1145/3563766.3564114

Oliver Michel

Princeton University
omichel@princeton.edu

Eric Keller

University of Colorado Boulder
eric.keller@colorado.edu

1 Introduction

Software-based packet processing is being widely adopted
across a number of use cases, such as data center load balanc-
ing [8], virtualized networking between containers [26, 27]
or virtual machines [16], and in 5G infrastructures [9]. Do-
ing so requires both high-performance and, in many cases,
the ability to introduce custom functionality. While Linux
is the most widely used platform for many such services,
supporting the packet processing performance required with
its out-of-the-box network stack is challenging [5, 12, 14].

This led to new approaches for enabling high-performance
custom packet processing through alternative pipelines. These
take several different forms, such as kernel bypass (e.g.,
DPDK [7], netmap [23]) which efficiently copy packets to a
user space program for processing, in-kernel network stack
bypass (e.g., XDP [12], Click [15]) which run inside kernel
space but are still largely an alternative pipeline as perfor-
mance is only obtained when the traffic does not touch the
Linux network stack, or as a new kernel (e.g., x-kernel [13],
Demikernel [28]).

Using an alternative pipeline vastly improves throughput
over receiving and processing packets through the Linux
networking stack and makes it easier to add new function-
ality; however, it incurs significant drawbacks. First, these
alternative pipelines cannot, without degrading performance,
leverage the rich and widely used networking functional-
ity of Linux such as its built-in bridging, packet filtering,
and traffic shaping subsystems together with their power-
ful management tools (e.g., iproute2 [10]). The rich ecosys-
tem extends to management software that builds around the
Linux APIs and interfaces (and command line tools), such as
Infrastructure-as-Code (e.g., Ansible), container networking
(e.g., Flannel), and control plane software (e.g., FRR [11] for
routing and StrongSwan [25] for IPsec).

In this paper we take the position that we should rethink
the design of the Linux network stack to address its shortcom-
ings, rather than creating alternative pipelines. Moreover,
we show that this is practical today.

Overheads in the Linux networking stack. To under-
stand what is needed as part of a re-design, we need to look at
the overheads in the Linux networking stack. The generality
that makes Linux networking so powerful is also one of its

https://doi.org/10.1145/3563766.3564114
https://doi.org/10.1145/3563766.3564114

HotNets ’22, November 14-15, 2022, Austin, TX, USA

main sources of inefficiencies. One dimension of this is that
there is a long, complex data path that performs too many
operations per packet. This includes many different proto-
cols and a wide array of functionality where Linux needs
to check whether each block of code to process needs to be
called or not. This leads to a long critical path which, in turn,
slows processing. A second dimension is that the processing
that does need to be executed is quite inefficient — again, due
to the need for generality. This includes both heavyweight
protocol implementations that can support all of the corner
cases (e.g., IP fragmentation), as well as heavyweight data
structures (e.g., sk_buff) for which the allocation process
is not just a memory allocation, but complete parsing of
packets to fill in all of the data into the structure.

There are two key insights that we can draw from this
— both opportunities for optimization of Linux networking.
First, in most cases, only a subset of functionality is actually
being used. For example, we might only need to set up a
bridge between two interfaces, but Linux still checks if we
are using IPsec, packet filters, or traffic shaping. Instead,
we believe Linux should be designed much like the models
proposed in the x-kernel [13] and Click [15] work — that
is as a composable design. However, unlike those in which
users explicitly provide a graph of processing, we need to
make this transparent from users of Linux.

Second, while Linux does have a degree of fast-path and
slow-path processing, such as the inclusion of some con-
trol protocols (e.g., spanning tree) in the kernel, it treats all
packets the same — with the same pipeline and same data
structures being allocated. Instead, we believe Linux should
explicitly separate out fast-path functionality and slow-path
functionality, and tailor the execution of each.

Rethinking the Linux networking stack is practi-
cal. Redesigning the Linux networking stack as proposed,
would require (1) a decomposition into explicit fast-path and
slow-path functionality and execution environments, and
(2) an ability to dynamically instantiate only the part of the
network stack that is used. While this is counter to the mono-
lithic design of Linux, we believe that, while not explicitly
designed for this purpose, there are existing frameworks that
can serve as the fast-path execution environment. The key
things we need in an execution environment for fast-path
processing are (1) that it is designed with efficiency in mind
for high throughput processing, (2) that it enables the dy-
namic loading of processing so that we can load only what is
needed at that particular time, and (3) an ability to interact
with the Linux kernel to be able to access its data structures
and exchange packets. Both Click and, more recently, XDP
provide all of these. What having this fast-path execution
environment enables is Linux, as exists today, to serve as the
slow path. With that, two more challenges remain: (1) how
to design the modules such that they are very lightweight

Marcelo Abranches, Oliver Michel, and Eric Keller

User Space Linux Networking
Applications TNA Controller Tools & Ecosystem
T
“pass (AF_XDP or Icom‘igure f introspect 1read/write
via kernel stack) ! | \
R N _ _ _ ___]
Linux Kernel v \ v
Network Stack
(unmodified)

XDP
-+
. . . read/write

—>
TNA Fast Path Modules hand off for

slow path

Config & State +
Packet Processing

HEEEE

Figure 1: TNA Overview.

and leverage the current Linux network stack as the slow
path, and (2) how to dynamically build a graph of Linux
processing of what is needed.

Introducing TNA. As a prototype realization of this vi-
sion, we introduce Transparent Network Acceleration (TINA),
shown in Figure 1, which includes a library of fast-path mod-
ules of various Linux networking functions coupled with
an orchestration layer that builds a custom data plane on
demand based only on what is configured in Linux (with
command line utilities or other software that use the Linux
interface to set data structures within the Linux kernel, such
as the forwarding table). The modules are designed to be
lightweight and can be stitched together and loaded into the
kernel with XDP. They are designed to work with the Linux
networking stack as the slow path by redirecting any need
for corner case processing or state management to the Linux
networking stack and accessing state through various helper
functions. Also, we support different application needs by
multiplexing packets to custom processing based on packet
header information. To determine what fast-path processing
graph to load at any given time, a lightweight controller
continuously introspects the kernel’s network configuration,
then it composes and places the currently used functions on
the data path. It also provides APIs for user-defined logic
to be inserted at any point in the data path. The result is a
fast Linux networking stack that is (1) fast as it only runs a
slim data plane of the currently required functions instead of
passing packets through a complex, general-purpose stack,
(2) transparent to the rest of the system as it uses the kernel’s
configuration and network state together with its ecosystem
of tools and third-party software, and (3) extensible as it uses
an underlying technology (XDP) that was designed to add
custom functionality to the Linux kernel efficiently.

To demonstrate the benefits and performance gains with
TNA, we accelerate the Linux bridging subsystem. With
this, the user can configure Linux bridges with the brctl
utility and TNA transparently accelerates the packet pro-
cessing. Depending on the CPU count, the TNA-accelerated
bridge improves throughput by 3.5-4.5 times over the Linux
networking stack implementation. We also compare with
Polycube [17], which directly leveraged XDP to accelerate

bridging by bypassing the Linux networking stack. Unlike
TNA, Polycube is not transparent to the user and requires
users to interact with custom control software. We show that
even in this case, the TNA-accelerated bridge is 1.5-2.5 times
faster. This largely stems from XDP being used as a bypass
of the Linux networking stack in Polycube, versus an explicit
leveraging of Linux functionality as a slow path that keeps
the TNA modules very lightweight.

In the remainder of the paper, we first discuss how we can
decompose Linux functionality into fast-path and slow-path
elements (Section 2) and how we can then automatically
build a custom fast data path that only includes needed func-
tionality based on the current context (Section 3). We then
describe the prototype implementation of TNA, along with
an evaluation based on accelerating the Linux bridge sub-
system (Section 4). We discuss related work in Section 5 and
conclude in Section 6.

2 Building Composable Fast-Path Modules

The first challenge to address is how to design the modules
such that they are very lightweight and leverage the current
Linux network stack as the slow path effectively. Here, we
first provide guidance on how to design the modules and
then describe how we decompose Linux functionality into
fast-path modules.

Designing fast-path modules. The Linux networking
stack today processes all packets without explicitly distin-
guishing them as fast-path or slow-path. In this way, any
packet that is sent to Linux will be correctly processed and
will correctly update internal state. In the trivial case, we can
consider that a fast path that is empty and sends all traffic to
the Linux networking stack will work correctly.

What we aim for is that elements be inserted such that
they can process a majority of packets without needing to
send them to the Linux networking stack. These elements
should only execute a few simple tasks such that they can
be as fast as possible. What this means is different for each
function; we provide some examples later in this subsection.
In general, it should only include the common-case data
plane processing — with corner cases and more complex
control protocols being handled by Linux. In XDP, this is
enabled through the ability to inject packets into the Linux
networking stack. So, modules must include functionality
that determines whether a packet can be processed just in
the fast path, or needs to be passed to the Linux stack.

The functions should not maintain their own state, but
instead only use existing Linux networking data structures.
In XDP, this can be done through the use of helper functions
1. This allows any given packet to be processed by the Linux

1Some kernel helpers are available to XDP today (e.g., bpf fib_lookup [3]),
but some are missing. So, to realize our full vision, we will both leverage
the ones that are available and build new ones as needed.

HotNets *22, November 14-15, 2022, Austin, TX, USA

networking stack without modification, otherwise synchro-
nization would be needed. State will largely be (but does
not need to be) read-only as much of the state management
exists within the higher-level control protocols or set from
management utilities (e.g., Linux command line tools) or
user-space control plane software.

Building a library of composable data-plane mod-
ules. To provide examples of these principles in practice, we
elaborate in Table 1 how we break Linux packet processing
into a series of lightweight modules for a set of Linux net-
working subsystems. While this is not an exhaustive set of
networking functionality, this list is highly representative
as those services serve as the basic building blocks to im-
plement complex networking applications such as bridges,
routers, NAT, firewalls, and container network interfaces
(CNIs).

The lightweight modules for each subsystem are respon-
sible for simple tasks, like parsing and rewriting packets,
looking up state in the kernel tables, and sending packets
for full processing when needed. We call those lightweight
modules TNA fast-path modules (FPMs) and we build a library
of them to execute tasks needed by each network subsystem.
For example, the fast path on a bridge deployment can be
composed by a series of pre-built TNA FPMs where each
of them performs tasks like packet parsing and rewriting,
forwarding database (FDB) lookups (via a kernel helper), and
L2 forwarding (directly from the fast path). The Linux ker-
nel exposes FDB access and port state to the fast path via a
kernel helper and performs tasks like aging, spanning tree
protocol (STP) and FDB misses handling, and packet flooding.
FDB misses/flooding should happen only for the first packet
destined to an unknown MAC address [4]. In this manner,
the fast path is able to process the majority of the packets
with higher performance than the full Linux processing (see
Section 4).

In the same manner, the fast path for a router uses TNA
FPM modules to parse packets, perform FIB (forwarding
information base) lookups, and L3 forwarding. The fast path
gets assistance from Linux by accessing exposed FIB and
neighbor data via a helper, supporting routing protocols like
BGP (in which protocol messages only need to be processed
every few seconds [22]), and other unsupported operations
like handling fragmented packets (which can be avoided [6]).

The netfilter subsystem exposes access control lists (ACLs)
and the table of initiated L4 connections/flows (called con-
ntrack table) to the fast path. This allows building accelerated
services like stateful firewalls and NAT?.

2Note that this model is essentially different from solutions like [17] which
maintains state in BPF maps and reimplements several networking fea-
tures in BPF form, missing the opportunity to leverage features already
implemented in the Linux ecosystem.

HotNets ’22, November 14-15, 2022, Austin, TX, USA

Marcelo Abranches, Oliver Michel, and Eric Keller

Subsystem || Fast Path In-Kernel State Control Plane + Slow Path

Bridging Parsing, rewriting, FDB lookup/update, | FDB, port state Manage FDB (aging), handle FDB
forwarding misses (flooding), STP protocol processing

Routing Parsing, rewriting, FIB lookup, FIB, neighbor tables | Routing Protocols (e.g., BGP, OSPF), ARP
forwarding handling, IP (de)fragmentation

Netfilter Parsing, rewriting, conntrack Conntrack, ACLs Conntrack handling, IP (de)fragmentation,
lookup/update, allow/deny packets handle rules on unsupported hooks

Table 1: Acceleration model for different packet processing applications.

3 Automated Fast-Path Data Plane Creation

The second key challenge is how to dynamically build and
load a fast-path processing graph consisting of only what
is needed. Before providing a more complete description, to
give intuition on how TNA can generate and deploy a mini-
mal XDP fast path to accelerate Linux networking services,
in agreement with what is currently configured, we describe
a simplified example for one use case. In this example, we
show how TNA would automatically instantiate an XDP
fast path to transparently accelerate a bridge deployment.
The process starts with an operator or automation frame-
work (e.g., Ansible) executing a sequence of commands using
Linux configuration tools (e.g., iproute2 and bretl) to config-
ure the bridge. So, the operator adds a network interface on
the Linux system (NIC1) to a desired VLAN (Y). The next
step is to issue a command to create the bridge (br1). After
that, NIC1 is added to br1 and STP is enabled on this bridge.

To automatically generate the XDP fast path for this ex-
ample, we need to introspect the Linux kernel looking for
bridge objects and retrieve the entities that compose them
(TNA objects). After that, we build a dependency graph with
relationships between those objects, allowing us to have
a structured view of the current bridge configuration. The
next step is to map the nodes of the graph into one or more
small units of pre-build eBPF code (TNA FPMs) that can be
stitched together to provide the necessary fast-path logic to
accelerate the bridge. In this example, the dependency graph
contains a bridge with VLANs and STP configured on it. In
this case, we stitch together and deploy a set of TNA FPMs
on NIC1 to (1) parse L2 header including VLANS, (2) send
STP messages for kernel processing (slow path), (3) perform
FDB lookups in the kernel, using a kernel helper, (4) when
a lookup fails, send the packet to the kernel, (5) when the
lookup succeeds, send the packet to the egress port directly
from the fast path.

We design the TNA controller (shown in Figure 2) with a
series of components that work together to allow the steps
just described to happen, as we explain next.

Introspect the Linux kernel. Our service introspection
component uses the Netlink protocol [19] by both sending
queries to the kernel at the controller startup time to get an
initial view of the current configured services and also by

TNA
Controller L
,,,,,,,,,,,,,,, : &
' i : ; TNA Fast
Service | Topology | |Capabiity | | s | L/ TNAFast/
Introspection | ~|Manager | | | Manager | ! accel > Path | > Path
: g i | Library | .-»Assembler| : | Deployer
7 SR TN S N ISR N B N N
TNA + TNA ara hF Resources‘ : TNA ‘: TNA | i |TNAdata
objetcs | grap description FPMs pipeline path
Controller |:| Controller Minimal XDP
Processing Artifact data path

Figure 2: TNA Controller

joining to multicast groups to get kernel notifications about
configuration changes and updates. The received messages
are converted into network objects descriptions (TNA ob-
jects) containing the type of object and a set of configuration
attributes. A network interface, for example, will contain
the type of interface (e.g., physical or virtual), its name, its
current state (e.g., up or down), IP configuration, and so on.

Build a dependency graph. TNA starts this process by
feeding the TNA objects generated by the service introspec-
tion to the topology manager component, which is responsi-
ble for processing each of those objects and establishing re-
lationships among them. This creates the TNA graph, which
is a dependency graph representing the services that are
currently configured and the objects that compose them. To
build the dependency graph, we leverage relationships that
can be derived from the Netlink messages (e.g., the bridge
that an interface is part of). Where this direct mapping is
not possible, we apply domain knowledge to derive other
dependencies. * For example, when we have an IP address
configured on a bridge interface, packets arriving at this in-
terface may need routing, so we add the required objects
representing this feature to the dependency graph accord-
ingly.

TNA aims to allow tailoring acceleration code for systems
according to the features they have available, such as the
presence of SmartNICs with XDP offload capabilities [20]
and a kernel version with needed helpers available. For doing
so, the capabilities manager component builds an inventory

3Currently, we do hard code domain knowledge in TNA. As future work we
aim to generalize defining supported kernel objects, services, configurations
and dependencies via configuration files.

of the available assets on a given system, such as the kernel
version, and network interface model.

Stitch together and deploy a set of TNA FPMs. The
TNA acceleration library has a set of pre-built TNA FPMs.
The fast-path assembler component uses outputs from the
topology manager, capability manager, and the TNA acceler-
ation library to generate a minimal fast path to support the
services that are currently configured on the system in accor-
dance to its capabilities. Currently, TNA does so by directly
mapping one or more TNA FPMs to each node of the TNA
graph in a hierarchical way that allows building a fast path
that has functional equivalence with the original Linux data
path (but is thinner and faster). We aim to generate a data
plane that is as thin as possible as this results in fewer in-
structions per packet (making processing faster), potentially
reduces cache misses (as code/data are more likely to fit on
processor’s cache), and leads to less resource consumption —
which is important on SmartNIC XDP offloads. Generating
a minimal data plane can be enforced by (1) avoiding code
duplication by carefully organizing the TNA graph nodes
such that several services on a pipeline can share TNA FPMs
(e.g., a packet parser) and (2) avoiding deploying unnecessary
code. For example, if there are no VLANSs or IPv6 configured
on the system, TNA will not deploy TNA FPMs to parse
those protocols.

Given the minimal fast path that was just generated, the
Fast Path Deployer is responsible to actually deploy the code
on XDP. Currently, we do this by having, at the beginning
of the pipeline, an XDP program that leverages the eBPF tail
call mechanism to send packets to the minimal data path.
Each time the data path is regenerated (which is triggered
by changes in configuration), TNA atomically replaces the
current XDP data path with the new one, by updating the
tail call reference to the new program on the eBPF map [12].
The XDP data path is built by in-lining the required FPM
modules to compose the full processing pipeline.

Extensible Fast Path. While the focus of this paper is
how to redesign the Linux networking stack itself to be high
performance, we of course inherit the desire for users to add
custom packet processing. For this, TNA provides an API
that allows injecting custom code on the packet processing
pipeline. This can be done in two ways. The first is to inject
custom eBPF code at different points in the XDP processing
pipeline. Those attachment points can be at the beginning of
the processing, at the end (e.g., before a packet is forwarded),
or somewhere in between (i.e., between two TNA FPMs).
This allows injecting custom network functionality in the
pipeline, e.g., monitoring [2], or load balancing [24], that
can work in concert with the deployed pipeline. The second
possibility is to add custom packet processing applications on
user space (e.g., [1]). This can be done by using a special type
of socket, called AF_XDP, that allows sending raw packets

HotNets *22, November 14-15, 2022, Austin, TX, USA

directly from the XDP layer. This enables creating a hybrid
kernel/user space processing environment where lower layer
protocol processing and security are provided by Linux/TNA
and upper layer processing (e.g., L4-L7) is provided by user
space with higher performance than a full Linux pipeline.
Full exploration is left as future work.

4 Prototype and Evaluation

We built an initial prototype to evaluate TNA’s feasibility
and performance. For our initial evaluation, we focus on
the use case of accelerating Linux’ bridge subsystem; it has
several mature features implemented in the kernel (e.g., STP
handling and MAC learning) and is widely deployed, for
example in data center networks and CNIs.

TNA bridge prototype. As there currently is no helper
function available in XDP to interact with bridge state inside
the kernel, we needed to add one. When a packet arrives at
the XDP layer, the helper adds the packet’s source MAC ad-
dress/ingress port to the kernel FDB table (if not yet present).
After that, given a destination MAC address/VLAN ID, if
there is a match on the FDB, the helper answers with the
output port and also the STP state (e.g., blocked or learning).

The TNA controller is able to introspect the kernel, build
the dependency graph representing the kernel objects re-
quired for a bridge, including the bridge name, the attached
network interfaces, their configuration (e.g., VLANs, STP,
etc.). Based on this graph, the TNA fast-path assembler com-
poses a minimal data path. For example, if there are no ex-
ternal routes configured on a system, TNA will not be accel-
erating L3 forwarding nor will code to parse the IP header
be added.

Evaluation. We now evaluate TNA’s ability to transpar-
ently accelerate a bridge deployment. To do so, we set up a
testbed composed of three servers. Two of them act as packet
generators using DPDK’s Pktgen. Both servers use a 10 Gbps
Intel NIC, and we use one CPU core to generate line rate
traffic (with 200 different MAC addresses) in one direction
at minimum packet size (close to 15 Mpps). Traffic in the
opposite direction is generated at 15 Kpps to keep FDB tables
“warm”. The third server runs the bridge deployment and is
used to forward traffic between the other machines using 10
Gbps Intel NICs directly connected to the packet generators;
we disable hyper threading and power saving. We run each
experiment 10 times for 10 seconds.

We deploy and compare TNA with both Linux (kernel
5.15) and Polycube [17] (v0.9.0). As Polycube completely
reimplements the bridge in eBPF/XDP and user space, it can-
not be configured with standard Linux tools; the command
polykubectl is required instead. In contrast, we configure the
Linux bridge with standard unmodified tools (e.g., ip, brctl,
bridge), and let the TNA controller automatically deploy an
accelerated XDP data path for this deployment. Figure 3

HotNets ’22, November 14-15, 2022, Austin, TX, USA

10.0
2 Li
. E] inux
S 751 . Polycube
s B A
= 5.0
a
S
S 2.5+
o
£

0.0

1 2 6
#CPUs

Figure 3: Throughput of Bridge Implementations.

shows the results using 1, 2, and 6 cores ((Intel Xeon E5-2620
v2 @ 2.10GHz) for each system. We can see that the Linux
bridge with TNA acceleration is up to 4.5 times faster than
without. It is also up to 2.5 times faster than the Polycube
bridge, with the added benefit of leveraging the Linux bridge
implementation and the respective configuration tools. In
this scenario, TNA is faster due to its ability to generate a
minimal data plane (avoiding unnecessary packet processing
overheads) and optimized access to kernel data structures,
which allows it to consume 38% and 64% fewer cycles per
packet than Polycube and Linux respectively.

5 Related Work

Kernel-bypass networking. A variety of packet I/O frame-
works take the approach of bypassing the kernel in order
to scale software packet processing, most notably the Data
Plane Development Kit [7], PF_RING [21], and Netmap [23].
Common to these frameworks is that they generally take
over control of a NIC, only copy packets a single time from
the NIC to pre-allocated memory via DMA, and rely on ex-
pensive busy polling instead of interrupts. In contrast, with
TNA we believe that the Linux networking stack should
not be bypassed, but instead redesigned such that we can
leverage the operating system’s networking features, and its
ecosystem of tools and control plane software.

In-kernel fast packet processing. There has been work
that can load custom packet processing functionality into
the kernel, providing both the opportunity to access ker-
nel state (e.g., the forwarding table) and exchange traffic
with the Linux networking stack. One such framework is the
Click [15] modular router, which allows stitching together
packet processing elements as a directed graph to build com-
plex network functions from an extensive library of elements
and loading that into the kernel as a kernel module. The eX-
press Data Path (XDP) [12] similarly provides an in-kernel
execution environment, but provides better safety through
the use of the eBPF virtual machine, and has been integrated
into mainline Linux. TNA is complementary to these efforts,
as we rely on the capabilities of XDP to provide a fast path
execution environment and are inspired by the model in
Click where modules can be stitched together. As example

Marcelo Abranches, Oliver Michel, and Eric Keller

applications built with XDP, most related to our work are
Polycube (which implemented alternate implementations of
some Linux network functions with XDP along with custom
interfaces) and Bastion [18] (which implements a CNI with
XDP). While providing acceleration, these fall short in that
they bypass the Linux networking stack and, in the case of
Polycube, slow-path processing needed to be implemented
from scratch in user space. In contrast, TNA uses Linux’ ex-
isting rich functionality as the slow path, avoiding the need
for costly reimplementation and non-standard interfaces.

Clean-slate approaches. Finally, entirely new kernel
architectures have also been proposed. X-kernel [13] is an
early work that proposes an OS designed to simplify build-
ing and composing communication protocols; it includes
abstractions and building blocks to realize a wide range of
protocols to be used within and across hosts. More recently,
Zhang et al. proposed Demikernel [28], an OS architecture
that aims at integrating legacy control plane software with a
fast data path bypassing the kernel. Those approaches have
in common that they propose completely new kernels and
radical changes to OS architecture. While achieving similar
goals, TNA can be deployed today as it can be implemented
using mechanisms Linux already provides.

6 Conclusion and Future Work

In this paper, we propose a redesign of the Linux network
stack, making it more suitable to address the needs of mod-
ern network systems in terms of performance, functionality
and extensibility. The redesign starts from the observation
that it is possible to instantiate a fast data path to Linux,
covering only functionality that is actually in use on the sys-
tem, avoiding many overheads that slow down Linux packet
processing. This can be achieved with technology that is
currently available in the Linux kernel. We show that our
prototype is 4.5 times faster than Linux for the bridge use
case. There is still work to do to realize our vision. First,
we need to do a more comprehensive analysis of the Linux
kernel network stack to support decomposing more of it
with our proposed redesign. Second, we need to investigate
techniques for building and optimizing the TNA dependency
graph, and to generate and deploy code based on it. Third,
we need to come up with a model that can ensure correct-
ness and consistency in the data plane as we insert custom
processing. Finally, we will explore debugging mechanisms
considering the new network stack design.

Acknowledgments

We thank Jennifer Rexford and the HotNets reviewers for
their helpful feedback on this work. This work has been sup-
ported in part by NSF as part of CAREER award no. 1652698
and the Coordenacgdo de Aperfeicoamento de Pessoal de
Nivel Superior — Brasil (CAPES) - Finance Code 001.

References

[1] Marcelo Abranches and Eric Keller. 2020. A Userspace Transport Stack

[10
[11

[12

(13

(14

(15

[16

(17

[18

(19

= o =

[t

=

=

—

—

—

-

Doesn’t Have to Mean Losing Linux Processing. In IEEE NFV-SDN.
IEEE.

Marcelo Abranches, Oliver Michel, Eric Keller, and Stefan Schmid.
2021. Efficient Network Monitoring Applications in the Kernel with
eBPF and XDP. In IEEE NFV-SDN. IEEE.

bpfhelpers 2021. Linux, bpf-helpers(7) — Linux manual page.
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html. (2021).
Retrieved June 10, 2022.

bridge 2012. Linux, bridge(8) —
https://man7.org/linux/man-pages/man8/bridge.8.html.
Retrieved June 10, 2022.

Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jachyun Hwang,
and Rachit Agarwal. 2021. Understanding host network stack over-
heads. In ACM SIGCOMM.

Cloudflare. 2017. Broken packets: IP fragmentation is flawed.
https://blog.cloudflare.com/ip-fragmentation-is-broken/. (2017). Re-
trieved June 10, 2022.

DPDK Project. 2022. Data Plane Development Kit. (2022). Retrieved
June 13, 2022, from https://www.dpdk.org.

Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A Fast and Reliable
Software Network Load Balancer. In USENIX NSDL

Open Networking Foundation. 2022. Aether. (2022). Retrieved June
16, 2022, from https://opennetworking.org/aether.

The Linux Foundation. 2022. iproute2. (2022). Retrieved June 21, 2022,
from https://wiki.linuxfoundation.org/networking/iproute2.

FRR Project. 2022. FRRouting Project. (2022). Retrieved June 14, 2022,
from https://frrouting.org.

Linux manual page.
(2012).

Toke Hpiland-Jargensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. 2018.
The express data path: Fast programmable packet processing in the
operating system kernel. In ACM CoNext.

N. Hutchinson and L. Peterson. 1988. Design of the X-Kernel. In ACM
SIGCOMM. 11. https://doi.org/10.1145/52324.52332

EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A
Highly Scalable User-level TCP Stack for Multicore Systems. In USENIX
NSDIL

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. 2000. The Click Modular Router. Transactions on Computer
Systems 18, 3 (aug 2000), 35. https://doi.org/10.1145/354871.354874
Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anu-
pam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul In-
gram, Ethan Jackson, Andrew Lambeth, Romain Lenglet, Shih-Hao
Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ramanathan,
Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan
Wendlandt, Alexander Yip, and Ronghua Zhang. 2014. Network Virtu-
alization in Multi-tenant Datacenters. In USENIX NSDL

Sebastiano Miano, Fulvio Risso, Mauricio Vasquez Bernal, Matteo
Bertrone, and Yunsong Lu. 2021. A Framework for eBPF-Based Net-
work Functions in an Era of Microservices. IEEE TNSM 18, 1 (2021).
Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod Yeg-
neswaran, and Seungwon Shin. 2020. BASTION: A Security Enforce-
ment Network Stack for Container Networks. In USENIX ATC.
netlink 2021. netlink(7) — Linux manual
https://man7.org/linux/man-pages/man7/netlink.7.html.
Retrieved June 10, 2022.

page.
(2021).

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

HotNets *22, November 14-15, 2022, Austin, TX, USA

Netronome Systems Inc. 2020. Netronome NFP-4000 Flow Pro-
cessor Product Brief. (2020). Retrieved June 17, 2021
from https://www.netronome.com/media/documents/PB_NFP-4000-7-
20.pdf.

NTOP. 2022. PF_RING: High-speed packet capture, filtering
and analysis. (2022). Retrieved June 13, 2022, from
https://www.ntop.org/products/packet-capture/pf_ring.

Cisco Press. 2018. BGP Fundamentals.
https://www.ciscopress.com/articles/article.asp?p=2756480. (2018).
Retrieved June 10, 2022.

Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet I/O. In
USENIX ATC.

Nikita Shirokov and Ranjeeth Dasineni. 2018. Open-sourcing Ka-
tran, a scalable network load balancer. (2018). Retrieved June 13,
2022, from https://engineering.fb.com/2018/05/22/open-source/open-
sourcing-katran-a-scalable-network-load-balancer.

strongSwan Project. 2022. strongSwan: the OpenSource IPsec-
based VPN Solution. (2022). Retrieved June 16, 2022, from
https://www.strongswan.org.

Tigera, Inc. 2022. Project Calico. (2022). Retrieved June 15, 2022, from
https://www.tigera.io/project-calico.

weaveworks. 2022. Weave Net. (2022). Retrieved June 16, 2022, from
https://www.weave.works/oss/net.

Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob
Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Korn-
feld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin,
Piali Choudhury, and Anirudh Badam. 2021. The Demikernel Datapath
OS Architecture for Microsecond-Scale Datacenter Systems. In ACM
SOSP. 17. https://doi.org/10.1145/3477132.3483569

https://doi.org/10.1145/52324.52332
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/3477132.3483569

	Abstract
	1 Introduction
	2 Building Composable Fast-Path Modules
	3 Automated Fast-Path Data Plane Creation
	4 Prototype and Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

