
POWERTCP: Pushing the Performance Limits of Datacenter Networksú

Vamsi Addanki
TU Berlin

University of Vienna

Oliver Michel
Princeton University
University of Vienna

Stefan Schmid
TU Berlin

University of Vienna

Abstract
Increasingly stringent throughput and latency requirements
in datacenter networks demand fast and accurate congestion
control. We observe that the reaction time and accuracy of
existing datacenter congestion control schemes are inherently
limited. They either rely only on explicit feedback about the
network state (e.g., queue lengths in DCTCP) or only on vari-
ations of state (e.g., RTT gradient in TIMELY). To overcome
these limitations, we propose a novel congestion control algo-
rithm, POWERTCP, which achieves much more fine-grained
congestion control by adapting to the bandwidth-window
product (henceforth called power). POWERTCP leverages
in-band network telemetry to react to changes in the network
instantaneously without loss of throughput and while keeping
queues short. Due to its fast reaction time, our algorithm is par-
ticularly well-suited for dynamic network environments and
bursty traffic patterns. We show analytically and empirically
that POWERTCP can significantly outperform the state-of-
the-art in both traditional datacenter topologies and emerging
reconfigurable datacenters where frequent bandwidth changes
make congestion control challenging. In traditional datacenter
networks, POWERTCP reduces tail flow completion times of
short flows by 80% compared to DCQCN and TIMELY, and
by 33% compared to HPCC even at 60% network load. In re-
configurable datacenters, POWERTCP achieves 85% circuit
utilization without incurring additional latency and cuts tail
latency by at least 2x compared to existing approaches.

1 Introduction
The performance of more and more cloud-based applications
critically depends on the underlying network, requiring data-
center networks (DCNs) to provide extremely low latency and
high bandwidth. For example, in distributed machine learning
applications that periodically require large data transfers, the
network is increasingly becoming a bottleneck [36]. Similarly,
stringent performance requirements are introduced by today’s
trend of resource disaggregation in datacenters where fast
access to remote resources (e.g., GPUs or memory) is pivotal

úResearch was conducted at the University of Vienna during 2020-21.

for the overall system performance [36]. Building systems
with strict performance requirements is especially challenging
under bursty traffic patterns as they are commonly observed
in datacenter networks [12, 16, 47, 53, 55].

These requirements introduce the need for fast and accu-
rate network resource management algorithms that optimally
utilize the available bandwidth while minimizing packet la-
tencies and flow completion times. Congestion control (CC)
plays an important role in this context being ‘‘a key enabler
(or limiter) of system performance in the datacenter’’ [34]. In
fact, fast reacting congestion control is not only essential to
efficiently adapt to bursty traffic [29,48], but is also becoming
increasingly important in the context of emerging reconfig-
urable datacenter networks (RDCNs) [13,14,20,33,38,39,50].
In these networks, a congestion control algorithm must be
able to quickly ramp up its sending rate when high-bandwidth
circuits become available [43].

Traditional congestion control in datacenters revolves
around a bottleneck link model: the control action is related to
the state i.e., queue length at the bottleneck link. A common
goal is to efficiently control queue buildup while achieving
high throughput. Existing algorithms can be broadly clas-
sified into two types based on the feedback that they react
to. In the following, we will use an analogy to electrical
circuits1 to describe these two types. The first category of
algorithms react to the absolute network state, such as the
queue length or the RTT: a function of network ‘‘effort’’ or
voltage defined as the sum of the bandwidth-delay product
and in-network queuing. The second category of algorithms
rather react to variations, such as the change of RTT. Since
these changes are related to the network ‘‘flow’’, we say that
these approaches depend on the current defined as the total
transmission rate. We tabulate our analogy and corresponding
network quantities in Table 1. According to this classifica-
tion, we call congestion control protocols such as CUBIC [21],
DCTCP [7], or Vegas [15] voltage-based CC algorithms as

1This analogy is inspired from S. Keshav’s lecture series based on mathe-
matical foundations of computer networking [31]. We emphasize that our
power analogy is meant for the networking context considered in this paper
and it should not be applied to other domains of science.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    51



Quantity Analogy
Total transmission rate (network flow) Current (l)
BDP + buffered bytes (network effort) Voltage (n)

Current ◊ Voltage Power (G)

Table 1: Analogy between metrics in networks and in electri-
cal circuits. Note that the network here is the ‘‘pipe’’ seen by
a flow and not the whole network.

Reaction to queue length or RTT

R
e

a
c
ti
o

n
 t

o
 v

a
ri

a
ti
o

n
s

Power-b
ase

d C
C

PowerTCP
(Lyapunov stable
Asymptotically stable)

HPCC
Queue-length based

Timely, Swift 
Delay-based

Timely
( low thresh -  high thresh )

RTT-gradient based
(Unstable)

DCTCP, DCQCN
CUBIC, NewReno
Loss/ECN-based

Better inflight control

B
e
tt

e
r 

re
a
c
ti
o
n
 t

im
e

Current-based CC

Voltage-based CC

Figure 1: Existing congestion control algorithms are funda-
mentally limited to a single dimension in their window (or
rate) update decisions and are unable to distinguish between
two scenarios across multiple dimensions.

they react to absolute properties such as the bottleneck queue
length, delay, Explicit Congestion Notification (ECN), or loss.
Recent proposals such as TIMELY [41] are current-based
CC algorithms as they react to the variations, such as the
RTT-gradient. In conclusion, we find that existing congestion
control algorithms are fundamentally limited to one of the
two dimensions (voltage or current) in the way they update
the congestion window.

We argue that the input to a congestion control algorithm
should rather be a function of the two-dimensional state of
the network (i.e., both voltage and current) to allow for more
informed and accurate reaction, improving performance and
stability. In our work, we show that there exists an accurate
relationship between the optimal adjustment of the conges-
tion window, the network voltage and the network current.
We analytically show that the optimal window adjustment de-
pends on the product of network voltage and network current.
We call this product network power: current ◊ voltage, a
function of both queue lengths and queue dynamics.

Figure 1 illustrates our classification. Existing protocols
depend on a single dimension, voltage or current. This can
result in imprecise congestion control as the protocol is un-
able to distinguish between fundamentally different scenarios,
and, as a result, either reacts too slowly or overreacts, both
impeding performance. Accounting for both voltage and cur-
rent, i.e., power, balances accurate inflight control and fast
reaction, effectively providing the best of both worlds.

In this paper we present POWERTCP, a novel power-based
congestion control algorithm that accurately captures both
voltage and current dimensions for every control action us-
ing measurements taken within the network and propagated
through in-band network telemetry (INT). POWERTCP is
able to utilize available bandwidth within one or two RTTs
while being stable, maintaining low queue lengths, and re-
solving congestion rapidly. Furthermore, we show that POW-
ERTCP is Lyapunov-stable, as well as asymptotically stable
and has a convergence time as low as five update intervals
(Appendix A). This makes POWERTCP highly suitable for
today’s datacenter networks and dynamic network environ-
ments such as in reconfigurable datacenters.

POWERTCP leverages in-network measurements at pro-
grammable switches to accurately obtain the bottleneck link
state. Our switch component is lightweight and the required
INT header fields are standard in the literature [36]. We also
discuss an approximation of POWERTCP for use with non-
programmable, legacy switches.

To evaluate POWERTCP, we focus on a deployment sce-
nario in the context of RDMA networks where the CC al-
gorithm is implemented on a NIC. Our results from large-
scale simulations show that POWERTCP reduces the 99.9-
percentile short flow completion times by 80% compared
to DCQCN [56] and by 33% compared to the state-of-the-
art low-latency protocol HPCC [36]. We show that POW-
ERTCP maintains near-zero queue lengths without affecting
throughput or incurring long flow completion times even
at 80% load. As a case study, we explore the benefits of
POWERTCP in reconfigurable datacenter networks where it
achieves 80≠85% circuit utilization and reduces tail latency
by at least 2◊ compared to the state-of-the-art [43]. Finally,
as a proof-of-concept, we implemented POWERTCP in the
Linux kernel and the telemetry component on an Intel Tofino
programmable line-rate switch using P4 [18].

In summary, our key contributions in this paper are:

• We reveal the shortcomings of existing congestion con-
trol approaches which either only react to the current
state or the dynamics of the network, and introduce the
notion of power to account for both.

• POWERTCP, a power-based approach to congestion con-
trol at the end-host which reacts faster to changes in the
network such as an arrival of burst, fluctuations in avail-
able bandwidth etc.,

• An evaluation of the benefits of POWERTCP in tradi-
tional DCNs and RDCNs.

• As a contribution to the research community and to fa-
cilitate future work, all our artefacts have been made
publicly available at:
https://powertcp.self-adjusting.net.

52    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://powertcp.self-adjusting.net


(a) Voltage-based CC is oblivious
to queue buildup rate.

(b) Current-based CC is oblivious
to queue lengths.

50

Increasing at rate 8x Draining at max rate Increasing at rate 8x

Bandwidth (b)Bandwidth (b)Bandwidth (b)

25

Case-1 Case-2 Case-3

Multiplicative decrease
Voltage-based: 3.24
Current-based: 9

Multiplicative decrease
Voltage-based: 2.12
Current-based: 1

Multiplicative decrease
Voltage-based: 2.12
Current-based: 9

Q
ue

ue

Q
ue

ue

Q
ue

ue

25

(c) Voltage-based CC cannot differentiate case-2 vs case-3;
whereas current-based CC cannot differentiate case-1 vs case-3.

Figure 2: Existing CC schemes, classified as voltage and current-based, are orthogonal in their response to queue length and
queue buildup rate.

2 Motivation
We first provide a more detailed motivation of our work by
highlighting the benefits and drawbacks of existing conges-
tion control approaches. In the following, voltage-based CC
refers to the class of end-host congestion control algorithms
that react to the state of the network in absolute values related
to the bandwidth-delay product, such as bottleneck queue
length, delay, loss, or ECN; current-based CC refers to the
class of algorithms that react to changes in the state, such as
the RTT-gradient. Voltage-based CC algorithms are likely to
exhibit better stability but are fundamentally limited in their
reaction time. Current-based CC algorithms detect congestion
faster but ensuring stability may be more challenging. In-
deed, TIMELY [41], a current-based CC, deployed at Google
datacenters, turned out to be unstable [57] and evolved to
SWIFT [34], a voltage-based CC.

Orthogonal to our approach, receiver-driven transport pro-
tocols [22,26,42] have been proposed which show significant
performance improvements. A receiver-driven transport ap-
proach relies on the assumption that datacenter networks are
well-provisioned and claims that congestion control is unnec-
essary; for example ‘‘NDP performs no congestion control
whatsoever in a Clos topology’’ [22]. The key difference is
that receiver-driven approaches take feedback from the ToR
downlink at the receiver which can only identify congestion
at the last hop, whereas sender-based approaches rely on a
variety of feedback signals to identify congestion anywhere
along the path. In this paper, we focus on the sender-based
congestion control approach which can in principle handle
congestion anywhere along the round-trip path between a
sender and a receiver, even in oversubscribed datacenters.

To take a leap forward and design fine-grained datacenter
congestion control algorithms, we present an analytical ap-
proach and study the fundamental problems faced by existing
algorithms. We first formally express the desirable proper-
ties of a datacenter congestion control law (§2.1) and then
analytically identify the drawbacks of existing control laws

(§2.2). Finally, we discuss the lessons learned and formulate
our design goals (§2.3).

2.1 Desirable Control Law Properties
Among various desired properties of datacenter congestion
control, high throughput and low tail latency are most im-
portant [7, 36, 41] with fairness and stability being essential
as well [54, 57]. Achieving these properties simultaneously
can be challenging. For example, to realize high throughput,
we may aim to keep the queue length at the bottleneck link
large; however, this may increase latency. Thus, an ideal CC
algorithm must be capable of maintaining near-zero queue
lengths, achieving both high throughput and low latency. It
must further minimize throughput loss and latency penalty
caused by perturbations, such as bursty traffic.

In order to formalize our requirements, we consider a single-
bottleneck link model widely used in the literature [24, 40,
54, 57]. Specifically, we assume that all senders use the same
protocol, transmit long flows2 sharing a common bottleneck
link with bandwidth b, and have a base round trip time t (ex-
cluding queuing delays). In this model, equilibrium is a state
reached when the window size and bottleneck queue length
stabilize. We now formally express the desired equilibrium
state that captures our performance requirements in terms
of the sum of window sizes of all flows (aggregate window
size) w(t), bandwidth delay product b ·t, and bottleneck queue
length q(t):

0 < q(t)< e (1)

b · t Æ w(t)< b · t+ e

q̇(t) = 0; ẇ(t) = 0

where e is a positive integer. First, this captures the require-
ment for high throughput i.e., when w(t)> b · t and q(t)> 0,
the number of inflight bytes are greater than the bandwidth-
delay product (BDP) and the queue length is greater than zero.

2Note that, although most DC flows are short flows, most DC traffic
volume (bytes) is from long flows [7, 9].

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    53



(a) Voltage-based CC (RTT or queue
length) exhibits equilibrium properties
but has an imprecise reaction leading to
throughput loss.

(b) Current-based CC (RTT-gradient) re-
acts faster but has no unique equilibrium
point, and is thereby unable to stabilize
queue lengths.

(c) POWERTCP, a power-based CC, ex-
hibits equilibrium properties and has a pre-
cise reaction to perturbations.

Figure 3: Phase plots showing the trajectories of existing schemes and our approach POWERTCP from different initial states
(circles) to equilibrium (triangles). At each point on the plane, arrows show the direction in which the system moves. An example
is depicted with bottleneck link bandwidth 100Gbps and a base RTT of 20µs. BDP is shown by a horizontal dotted line and any
trajectory going below this line indicates throughput loss.

Second, from w(t)< b · t+ e and q(t)< e, the queue length
is at most e, thereby achieving low latency. Finally, for the
system to stabilize, we need that q̇(t) = 0 and ẇ(t) = 0.

As simple as these requirements are, it is challenging to
control the aggregate window size w(t) while CC operates
per flow. In addition to the equilibrium state requirement,
we need fast response to perturbations. The response must
minimize the distance from the equilibrium i.e., minimize the
latency or throughput penalty caused by a perturbation (e.g.,
incast or changes in available bandwidth).

In this work, we ask two fundamental questions:
(Q1) Equilibrium point: Do existing algorithms satisfy the
equilibrium state in Eq. 1 for the aggregate window size?
In addition to the equilibrium behavior, we are also interested
in the reaction to a perturbation.
(Q2) Response to perturbation: What is the trajectory fol-
lowed after a perturbation, i.e., the dynamics of the bottleneck
queue as well as the TCP window sizes, from an initial point
to the equilibrium point?

2.2 Drawbacks of Existing Control Laws
We now aim to analytically answer our questions above and
shed light on the inefficiencies of existing protocols, both
voltage-based and current-based. We begin by simplifying
the congestion avoidance model of existing CC approaches
we are interested in, specifically delay, queue length, and
RTT-gradient based CC approaches as follows:

wi(t +dt) = g ·
3

wi(t) ·
e

f (t) +b
4
+(1≠ g) ·wi(t) (2)

Here wi is the window of a flow i, b is the additive increase
term, e is the equilibrium point that the algorithm is expected
to reach, f (t) is the measured feedback and g is the exponen-
tial moving average parameter. A queue length-based CC [36]
sets the desired equilibrium point e as b ·t (BDP) and the feed-
back f (t) as the sum of bottleneck queue length and BDP i.e.,

voltage (n). A delay-based CC [34] sets e to t (base RTT)
and the feedback f (t) as RTT which is the sum of queuing
delay and base RTT i.e., voltage

bandwidth ( n
b ). Similarly, the RTT-

gradient approach [41] sets e to 1 and the feedback f (t) as
one plus RTT-gradient i.e., current

bandwidth (l
b ). In Appendix B, we

further justify how Eq. 2 captures existing control laws3. Note
that our simplified model does not capture loss/ECN-based
CC algorithms; however, there exists rich literature on the
analysis of loss/ECN-based CC algorithms [24, 37] including
DCTCP [7, 8]. We now use Euler’s first order approximation
to obtain the window dynamics as follows:

ẇi(t) =
g
dt

·
3

wi(t) ·
e

f (t) ≠wi(t)+b
4

(3)

Each flow i has a sending rate li and hence the bottleneck
queue experiences an aggregate arrival rate of l. In our anal-
ogy, l is the network current. We additionally use the tradi-
tional model of queue length dynamics which is independent
of the control law [24, 40]:

q̇(t) =
I

l(t ≠ t f )≠µ(t) q(t)> 0
0 otherwise

(4)

where l(t) = w(t)
q(t) . An equilibrium point is the window size

we and queue length qe that satisfies ẇ(t) = 0 and q̇(t) = 0.
We are now ready to answer the questions raised.

Equilibrium point: It is well-known from literature that
loss/ECN-based schemes operate by maintaining a standing
queue [8, 24, 27]. For example, TCP NewReno flows fill the
queue to maximum (say qmax) and then react by reducing
windows by half. Consequently, the bottleneck queue-length
oscillates between qmax and qmax ≠b · t or zero if qmax < b · t.
DCTCP flows oscillate around the marking threshold K > b·t

7

3TIMELY, for example, is rate-based while our simplification is window-
based. However, window and rate are interchangeable for update calculations.

54    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



which depends on BDP [7]. This does not satisfy our strin-
gent requirement in Eq. 1. While ECN-based schemes reduce
the amount of standing queue required, we still consider the
standing queue which is proportional to bandwidth to be un-
acceptable given the increasing gap between bandwidth vs
switch buffers.

It can be shown that there exists a unique equilibrium
point for queue length and delay approaches (voltage-based
CC) defined by Eq. 2. However, current-based CC and, in
particular, RTT-gradient approaches do not have a unique
equilibrium point suggesting a lack of control over queue
lengths. Intuitively, RTT-gradient approaches quickly adapt
the sending rate to stabilize the RTT-gradient (q̇ = q̇

b ) which
in turn only stabilizes the queue length gradient q̇(t) but fails
to control the absolute value of the queue length. It has indeed
been shown that TIMELY, a current-based CC does not have
a unique equilibrium [57].

Figure 3 visualizes the system behavior according to the
window dynamics in Eq. 3 and the queue dynamics in Eq. 4.
In Figure 3a we can see that voltage-based CC eventually
reaches a unique equilibrium point. In contrast, in Figure 3b
we see that current-based CC reaches different final points for
different initial points, indicating that there exists no unique
equilibrium point thereby violating the desired equilibrium
state properties (Eq. 1). To give more context on this observa-
tion, in Figure 2 we show the reactions of different schemes
for observed queue lengths and queue buildup rate. In Fig-
ure 2b, we can see that current-based CC has the same reaction
for different queue lengths but exhibits a proportional reaction
to queue buildup rate (Figure 2a); consequently, current-based
CC cannot stabilize at a unique equilibrium point. Due to
space constraints, we move the detailed proof of equilibrium
points to Appendix B.

Takeaway. While voltage-based CC can in principle meet
the desired equilibrium state requirements in Eq. 1, current-
based CC cannot.
Response to perturbation: We observe an orthogonal behav-
ior in the responses of voltage-based CC and current-based
CC. In Figure 2b we show that voltage-based CC has a propor-
tional reaction to increased queue lengths but a current-based
CC approach has the same response for any queue length.
Further in Figure 2a we observe that current-based CC has a
proportional reaction to the rate at which queue is building
up but a voltage-based CC has the same reaction for any rate
of queue build up. This orthogonality in existing schemes
often results in scenarios with either insufficient reaction or
overreaction. To underline our observation, we use the system
of differential equations (Eq. 3 and Eq. 4) to observe the tra-
jectories taken by different control laws after a perturbation.
We show the trajectories in Figure 3. Specifically, Figure 3a
shows that voltage-based CC (queue length or delay based)
eventually reaches a unique equilibrium point but overreacts
in the response and losing throughput (window < BDP and
q(t) = 0) almost for every initial point. In Figure 3b we ob-
serve that current-based CC (RTT-gradient) reaches different

end points for different initial states and consequently does
not have a single equilibrium point. However, we see that the
initial response is faster with current-based CC due to their
use of RTT-gradient which is arguably a superior signal to
detect congestion onset even at low queue lengths.

Takeaway. Current-based CC is superior in terms of fast
reaction but lacks equilibrium state properties while voltage-
based CC eventually reaches a unique equilibrium but over-
reacts in its response for almost any initial state resulting in
long trajectories from initial state to equilibrium state.

2.3 Lessons Learned and Design Goals
From our analysis we derive two key observations. First,
both voltage and current-based CC have individual benefits.
Particularly, voltage-based CC is desirable for the stringent
equilibrium properties we require and current-based CC is
desirable for fast reaction. Second, both voltage and current-
based CC have drawbacks. On one hand, voltage-based CC
is oblivious to congestion onset at low queue lengths and on
the other hand current-based CC is oblivious to the absolute
value of queue lengths. Moreover, voltage-based CC over-
reacts when the queue drains essentially losing throughput
immediately after.

Based on these observations, our goal is to design a control
law that systematically combines both voltage and current
for every window update action. Specifically our aim is to
design a congestion control algorithm with (i) equilibrium
properties from Eq. 1 exhibited by voltage-based CC and (ii)
fast response to perturbation exhibited by current-based CC.
The challenges are to avoid inheriting the drawbacks of both
types of CC, stability and fairness. However in order to design
such a control law we face the following challenges:

• Finding an accurate relationship between window,
voltage and current. Û Property 1

• Ensuring stability, convergence and fairness.
Û Theorem 1, 2, 3

3 Power-Based Congestion Control
Reflecting on our observations in §2, we seek to design a
congestion control algorithm that systematically reacts to
both the absolute value of the bottleneck queue length and
its rate of change. Our aim is to address today’s datacenter
performance requirements in terms of high throughput, low
latency, and fast reaction to bursts and bandwidth fluctuations.

3.1 The Notion of Power
To address the challenges faced by prior datacenter conges-
tion control algorithms and to optimize along both dimen-
sions, we introduce the notion of power associated with the
network pipe. Following the bottleneck link model from liter-
ature [24, 40], from Eq. 4 we observe that the window size is
indeed related to the product of network voltage and network
current which we call power (Table 1). This corresponds to
the product of (i) total sending rate l (current) and (ii) the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    55



sum of BDP plus the accumulated bytes q at the bottleneck
link (voltage), formally expressed in Eq. 5.

G(t)¸˚˙˝
power

= (q(t)+b · t)¸ ˚˙ ˝
voltage

·l(t ≠ t f )¸ ˚˙ ˝
current

(5)

Notice that the unit of power is bit2

second . We will show the use-
ful properties of power specifically under congestion. Using
Eq. 4, we can rewrite Eq. 5 in terms of queue length gradient
q̇ and the transmission rate µ as,

G(t) = (q(t)+b · t) · (q̇(t)+µ(t)) (6)

We now derive a useful property of power using Eq. 6 and
Eq. 4 showing an accurate relationship of power and window.

Property 1 (Relationship of Power and Congestion Window).
Power is the bandwidth-window product

G(t) = b ·w(t ≠ t f )

Note that the property is over the aggregate window size i.e.,
the sum of window sizes of all flows sharing the common
bottleneck. We emphasize that our notion of power is intended
for the networking context and cannot be applied to other
domains of science. In the following, we outline the benefits
of considering the notion of power and how Property 1 can
be useful in the context of congestion control.

3.2 Benefits of Power-Based CC
A power-based control law can exploit Property 1 to pre-
cisely update per flow window sizes. Accurately controlling
aggregate window size is a key challenge for an end-host con-
gestion control algorithm. A power-based CC overcomes this
challenge by gaining precise knowledge about the aggregate
window size from measured power. First, using power en-
ables the window update action to account for the bottleneck
queue lengths as well as the queue build-up rate. As a result,
a power-based CC can rapidly detect congestion onset even at
very low queue lengths. At the same time, a power-based CC
also reacts to the absolute value of queue lengths, effectively
dampening perturbations. Second, calculating power at the
end-host requires no extra measurement and feedback mecha-
nisms compared to INT based schemes such as HPCC [36].

3.3 The POWERTCP Algorithm
Driven by our observations, we carefully designed our control
law based on power, capturing a systematic reaction to voltage
(related to bottleneck queue length), as well as to current
(related to variations in the bottleneck queue length).
Control law: POWERTCP is a window-based congestion
control algorithm and updates its window size upon receipt
of an acknowledgment. For a flow i, every window update is
based on (i) current window size wi(t), (ii) additive increase
b, (iii) window size at the time of transmission of the acknowl-
edged segment wi(t ≠q(t)), and (iv) power measured from

the feedback information. We refer the reader to Table 2 for
the general notations being used. Formally, POWERTCP’s
control law can be expressed as

wi(t)Ω g ·
3

wi(t ≠q(t)) · e
f (t) +b

4
+(1≠ g) ·wi(t) (7)

e = b2 · t; f (t) = G(t ≠q(t)+ t f )

where g œ (0,1] and b are parameters to the control law. The
base round trip time t must be configured at compile time. If
baseRTT is not precisely known, an alternative is to keep track
of minimum observed RTT. We first describe how power G
is computed and then present the pseudocode of POWERTCP
in Algorithm 1.
Feedback: POWERTCP’s control law is based on power.
Note that power (Eq. 5) is only related to variables at the bot-
tleneck link. In order to measure power, we leverage in-band
network telemetry. Specifically, the workings of INT and the
header fields required are the same as in HPCC (Figure. 4
in [36]). When a TCP sender sends out a packet P into
the network, it additionally inserts an INT header INT into
the packet. Each switch along the path then pushes metadata
containing the egress queue length (qlen), timestamp (ts), so
far transmitted bytes (txBytes), and bandwidth (b). All val-
ues correspond to the time when the packet is scheduled for
transmission. At the receiver, the received packet P INT 1,2,...r

is read and the INT information is copied to the acknowl-
edgment ACK packet A INT 1,2,...r . The sender then receives
an ACK with an INT header and metadata inserted by all the
switches along the path from sender to receiver and back to
sender A INT 1,2,...r INT ..., n . Here, the INT header and meta-data
pushed by switches along the path serve as feedback and as
an input to the CC algorithm.
Accounting for the old window sizes: POWERTCP’s con-
trol law (Eq. 7) uses the past window size in addition to the
current window size to compute the new window size. POW-
ERTCP accounts for old window size by remembering current
window size once per RTT.
Algorithm: Putting it all together, we now present the work-
flow of POWERTCP in Algorithm 1. Upon the receipt of
a new acknowledgment (line 2), POWERTCP: (i) retrieves
the old cwnd (line 3), (ii) computes the normalized power
(line 19) i.e., f (t)

e in Eq. 7, (iii) updates cwnd (line 5), (iv) sets
the pacing rate (line 6), and (v) remembers the INT header
metadata and updates the old cwnd once per RTT based on
the ack sequence number (line 7).

Specifically, power is calculated in the function call to
NORMPOWER. First, the gradient of queue lengths is obtained
from the difference in queue lengths and difference in times-
tamps corresponding to an egress port (line 12). Then the
transmission rate of the egress port is calculated from the
difference in txBytes and timestamps (line 13). Current is
calculated by adding the queue gradient and transmission rate
(line 14). Then, the sum of BDP and the queue length gives

56    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



voltage (line 16). Finally, power is calculated by multiplying
current and voltage (line 17). We calculate the base power
(line 18) and obtain the normalized power (line 19). The nor-
malized power is calculated for each egress port along the
path and the maximum value is smoothed and used as an input
to the control law.

Finally, the congestion window is updated in the function
call to UPDATEWINDOW (line 26) where g is the exponen-
tial moving average parameter and b is the additive increase
parameter, both being parameters to the control law (Eq. 7)

Algorithm 1: POWERTCP
1 /* ack contains an INT header with

sequence of per-hop egress port

meta-data accessed as ack.H[i] */

Input : ack and prevInt
Output : cwnd, rate

2 procedure NEWACK(ack):
3 cwndold = GETCWND(ack.seq)
4 normPower = NORMPOWER(ack)
5 UPDATEWINDOW(normPower, cwndold)
6 rate = cwnd

t
7 prevInt = ack.H; UPDATEOLD(cwnd,ack.seq)
8 function NORMPOWER(ack):
9 Gnorm = 0

10 for each egress port i on the path do
11 dt = ack.H[i].ts≠ prevInt[i].ts
12 q̇ = ack.H[i].qlen≠prevInt[i].qlen

dt Û dq
dt

13 µ = ack.H[i].txBytes≠prevInt[i].txBytes
dt Û txRate

14 l = q̇+µ Û l : Current
15 BDP = ack.H[i].b◊ t
16 n = ack.H[i].qlen+BDP Û n : Voltage
17 GÕ = l◊n Û GÕ : Power
18 e = (ack.H[i].b)2 ◊ t
19 GÕ

norm = GÕ

e Û GÕ
norm :Normalized power

20 if GÕ
> Gnorm then

21 Gnorm = GÕ ; Dt = dt
22 end if
23 end for
24 Gsmooth = Gsmooth·(t≠Dt)+Gnorm·Dt

t Û Smoothing
25 return Gsmooth
26 function UPDATEWINDOW(power, ack):
27 cwnd = g◊ ( cwndold

normPower +b)+(1≠ g)◊ cwnd
28 Û g : EWMA parameter
29 Û b: Additive Increase
30 return cwnd

Parameters: POWERTCP has only two parameters, that is
the EWMA parameter g and the additive increase parameter b.
g dictates the balance in reaction time and sensitivity to noise.
We recommend g = 0.9 based on our parameter sweep over
wide range of scenarios including traffic patterns that induce

rapid fluctuations in the bottleneck queue lengths. Reflecting
the intuition for additive increase in prior work [36], we set
b = HostBw◊t

N where N is the expected number of flows shar-
ing host NIC, HostBw is the NIC bandwidth at the host and t
is the base-RTT. This is to avoid queuing at the local interface
or, in other words, to avoid making the host NIC a bottleneck,
assuming a maximum of N flows share the host NIC band-
width. Finally, all flows transmit at line rate in the first RTT
and use cwndinit = HostBw◊ t. By transmitting at line rate,
a new flow is able to discover the bottleneck link state and
reduce its cwnd accordingly without getting throttled due to
the presence of existing flows.

3.4 Properties of POWERTCP
POWERTCP comes with strong theoretical guarantees. We
show that POWERTCP’s control law achieves asymptotic sta-
bility with a unique equilibrium point that satisfies our desired
equilibrium state properties (Eq. 1). POWERTCP also guaran-
tees rapid convergence to equilibrium and achieves fairness
at the same time. In the following we outline POWERTCP’s
properties and defer the proofs to Appendix A.

Theorem 1 (Stability). POWERTCP’s control law is
Lyapunov-stable as well as asymptotically stable with a
unique equilibrium point.

Theorem 2 (Convergence). After a perturbation, POW-
ERTCP’s control law exponentially converges to equilibrium
with a time constant dt

g where dt is the window update interval.

Theorem 3 (Fairness). POWERTCP is bi weighted propor-
tionally fair, where bi is the additive increase used by a flow
i.

Theorem 1 and Theorem 2 state the key properties of POW-
ERTCP. First, the convergence with time constant of dt

g shows
the fast reaction to perturbations. Second, the system being
asymptotically stable at low queue lengths satisfies our strin-
gent equilibrium property discussed in §2. Indeed, power and
Property 1 play a key role in the proof of Theorem 1 and The-
orem 2 (Appendix A) revealing its importance in congestion
control. In Figure 3c, we see the trajectories of POWERTCP
from different initial states to a unique equilibrium without
violating throughput and latency requirements, showing the
accurate control enabled by power-based congestion control.

3.5 q-POWERTCP: Standalone Version
POWERTCP’s control law requires in-network queue length
information which can be obtained by using techniques
such as INT. In order to widen its applicability, POW-
ERTCP can still be deployed in datacenters with legacy, non-
programmable switches through accurate RTT measurement
capabilities at the end-host. In this case, we rearrange term e

f
in Eq. 7 as follows,

e
f
= b2 · t

G
= b2 · t

(q̇+b) · (q+b · t) =
t

( q̇
b +1) · ( q

b + t)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    57



finally, using the fact that q
b + t = q (RTT) and q̇

b = q̇ (RTT-
gradient), we reduce e

f to,

e
f
= t

(q̇+1) · (q)
(8)

where q̇ is the RTT-gradient and q is RTT. Using Eq. 8 in
Eq. 7 allows for deployment even when INT is not sup-
ported by switches in the datacenter. Due to space con-
straints we moved the algorithm to Appendix D, presenting
q-POWERTCP in Algorithm 2. This algorithm demonstrates
how POWERTCP’s control law can be mimicked by using a
delay signal without the need for switch support. However, as
we will show later in our evaluation, there are drawbacks in
using RTT instead of queue lengths. First, notice how queue
lengths are changed to RTT, where we assume bottleneck
txRate (µ) as bandwidth (b). The implication is that, when
using txRate which is essentially obtained from INT, the con-
trol law knows the exact transmission rate and rapidly fills
the available bandwidth. But, when using RTT, the control
law assumes the bottleneck is at maximum transmission rate
and does not react by multiplicative increase and rather relies
on slow additive increase to fill the available bandwidth. Sec-
ondly, in multi-bottleneck scenarios, the control law precisely
reacts to the most bottlenecked link when using INT but reacts
to the sum of queuing delays when using RTT. Nevertheless,
under congestion, both POWERTCP and q-POWERTCP have
the same properties in a single-bottleneck scenario.

3.6 Deploying POWERTCP
Modern programmable switches are able to export user-
defined header fields and device metrics [18, 32]. These met-
rics can be embedded into data packets, a mechanism com-
monly referred to as in-band network telemetry (INT). POW-
ERTCP leverages INT to obtain fine-grained, per-packet feed-
back about queue occupancies, traffic counters, and link con-
figurations within the network. For deployment with legacy
networking equipment, we have proposed q-POWERTCP
which only requires accurate timestamps to measure the RTT.

We imagine POWERTCP and q-POWERTCP to be
deployed on low-latency kernel-bypass stacks such as
SNAP [11] or using NIC offload. Yet, in this work, instead
of implementing our algorithms for these platforms, we show
how POWERTCP and q-POWERTCP can readily be deployed
by merely changing the control logic of existing congestion
control algorithms. In particular, we compare our work to
HPCC [36] which is based on INT feedback and SWIFT [34]
which is based on delay feedback.

POWERTCP requires the same switch support and header
format as HPCC, as well as packet pacing support from the
NIC. Additionally, it does not maintain additional state com-
pared to HPCC but requires one extra parameter g, the moving
average parameter for window updates. Similar to SWIFT
and TIMELY, q-POWERTCP requires accurate packet times-
tamps from the NIC but it does not require any switch sup-
port. The simpler logic of q-POWERTCP (compared to POW-

ERTCP) only reacts once per RTT and reduces the number
of congestion control function calls.

The core contribution of this paper is the design of a novel
control law and we do not explore implementation challenges
further at this point since POWERTCP does not add addi-
tional complexity compared to existing algorithms. Still, to
confirm the practical feasibility of our approach, we imple-
mented POWERTCP as a Linux kernel congestion control
module. We also implemented the INT component as a proof
of concept for the Intel Tofino switch ASIC [18].

The switch implementation is written in P4 and uses a
direct counter associated with the egress port to maintain the
so far transmitted bytes and appends this metric together with
the current queue occupancy upon dequeue from the traffic
manager to each segment. We leverage a custom TCP option
type to encode this data and append 64 bit per-hop headers to
a 32 bit base header. The implementation uses less than one
out of 12 stages of the Tofino’s ingress pipeline (where the
headers are prepared and appended) and less than one out of
12 stages in the egress pipeline (where the measurements are
taken and inserted). The processing logic runs at line rate of
3.2 Tbit per second.

4 Evaluation
We evaluate the performance of POWERTCP and q-
POWERTCP and compare against existing CC algorithms.
Our evaluation aims at answering four main questions.
(Q1) How well does POWERTCP react to congestion?
We find that POWERTCP outperforms the state-of-the-art
congestion control algorithms, reducing tail buffer occupancy
and consequently tail latency under congestion by 30% when
compared to HPCC and at least by 60% compared to TIMELY
and DCQCN.
(Q2) Does POWERTCP introduce a tradeoff between through-
put and latency?
Our evaluation shows that POWERTCP does not trade
throughput for latency and that POWERTCP rapidly con-
verges to near-zero queue lengths without losing throughput.
(Q3) How much can we benefit under realistic workloads?
We show that POWERTCP improves 99th-percentile flow
completion times for short flows (< 10KB) by 33% compared
to HPCC, by 99% compared to HOMA and by 74% compared
to TIMELY and DCQCN even at moderate network loads. At
the same time, we find that POWERTCP does not penalize
long flows (> 1MB). In fact, we find that q-POWERTCP per-
forms equally well for short flows compared to POWERTCP
but performs similarly to TIMELY for medium and long
flows.
(Q4) How does POWERTCP perform under high load and
bursty traffic patterns?
Our evaluation shows that the benefits of POWERTCP are fur-
ther enhanced under high loads and that POWERTCP remains
stable even under bursty traffic.

58    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



(a) POWERTCP (b) q-POWERTCP (c) TIMELY (d) HPCC (e) HOMA

Figure 4: State-of-the-art congestion control algorithms vs POWERTCP in response to an incast. For each algorithm, we show
the corresponding reaction to 10 : 1 incast in the top row and to 255 : 1 incast in the bottom row.

4.1 Setup
Our evaluation is based on network simulator NS3 [4].
Topology: We consider a datacenter network based on a Fat-
Tree topology [5] with 2 core switches and 256 servers orga-
nized into four pods. Each pod consists of two ToR switches
and two aggregation switches. The capacity of all the switch-
to-switch links are 100Gbps and server-to-switch links are
all 25Gbps leading to 4 : 1 oversubscription similar to prior
work [49]. The links connecting to core switches have a
propagation delay of 5µs and all the remaining links have a
propagation delay of 1µs. We set up a shared memory archi-
tecture on all the switches and enable the Dynamic Thresh-
olds algorithm [17] for buffer management across all the
ports, commonly enabled in datacenter switches [1,2]. Finally
we set the buffer sizes in our topology proportional to the
bandwidth-buffer ratio of Intel Tofino switches [18].
Traffic mix: We generate traffic using the web search [7]
flow size distribution to evaluate our algorithm using real-
istic workloads. We evaluate an average load (on the ToR
uplinks) in the range of 20%≠95%. We also use a synthetic
workload similar to prior work [6] to generate incast traffic.
Specifically, the synthetic workload represents a distributed
file system where each server requests a file from a set of
servers chosen uniformly at random from a different rack. All
the servers which receive the request respond at the same time
by transmitting the requested part of the file. As a result, each
file request creates an incast scenario. We evaluate across
different request rates and request sizes.
Comparisons and metrics: We evaluate POWERTCP with
and without switch support and compare to HPCC [36], DC-
QCN [56], and TIMELY [41] representing sender-based con-
trol law approaches similar to POWERTCP and HOMA [42]
representing receiver-driver transport. We report flow com-
pletion times and switch buffer occupancy metrics.
Configuration: We set g = 0.9 for POWERTCP and q-
POWERTCP. Both HPCC and POWERTCP are configured
with base-RTT (t) set to the maximum RTT in our topol-
ogy and HostBw is set to the server NIC bandwidth. The

product of base-RTT and HostBw is configured as RTTBytes
for HOMA and the over-commitment level is set to 1 where
HOMA performed best across different overcommitment lev-
els in our setup. We report our results for all overcommit-
ment levels (1-6) in Appendix C. We set the parameters for
DCQCN following the suggestion in [36] which is based on
experience and TIMELY parameters are set according to [41].

4.2 Results

POWERTCP reacts rapidly yet accurately to congestion:
We evaluate POWERTCP’s reaction to congestion in two
scenarios: (i) 10 : 1 small-scale incast and (ii) 255 : 1 large-
scale incast. Figure 4 shows the aggregate throughput and
the buffer occupancy at the bottleneck link for POWERTCP,
TIMELY, HPCC and HOMA. First, at time t = 0, we launch
ten flows simultaneously towards the receiver of a long flow
leading to a 10:1 incast. We show in Figure 4a and Figure 4b
that POWERTCP quickly mitigates the incast and reaches
near zero queue lengths without losing throughput. In Fig-
ure 4d we see that HPCC indeed reacts quickly to get back
to near-zero queue lengths. On one hand, however, HPCC
does not react enough during the congestion onset and reaches
higher buffer occupancy ¥ 2x compared to POWERTCP and
on the other hand loses throughput after mitigating the incast
as opposed to POWERTCP’s stable throughput. TIMELY as
shown in Figure 4c does not control the queue-lengths ei-
ther and loses throughput after reacting to the incast. While
HOMA sustains throughput, we observe from Figure 4e that
HOMA does not accurately control bottleneck queue-lengths.
Second, at time t = 0, in addition to the 10 : 1 incast, the
256th server sends a query request (§4.1) to all the other
255 servers which then respond at the same time, creating a
255:1 incast. From Figure 4a and Figure 4b (bottom row),
we observe similar benefits from both POWERTCP and q-
POWERTCP even at large-scale incast: both react quickly and
converge to near-zero queue-lengths without losing through-
put. In contrast, from Figure 4c and Figure 4d we see that
TIMELY and HPCC lose throughput immediately after re-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    59



(a) POWERTCP (ms scale) (b) HOMA (ms scale)

(c) q-POWERTCP (d) TIMELY

Figure 5: Fairness and stability

(a) 20% load (b) 60% load

Figure 6: 99.9 percentile flow completion times with websearch workload
(a) even at low network load, POWERTCP outperforms existing algorithms
and (b) as the load increases the benefits of POWERTCP are enhanced.
However, only short flows benefit from q-POWERTCP.

acting to the increased queue length. From Figure 4e we
observe that HOMA reaches approximately 500KB higher
queue-length compared to POWERTCP and cannot converge
to near-zero queue-lengths quickly.
POWERTCP is stable and achieves fairness: POWERTCP
not only reacts rapidly to reduce queue lengths but also fea-
tures excellent stability. Figure 5 shows how bandwidth is
shared by multiple flows as they arrive and leave. We see that
POWERTCP stabilizes to a fair share of bandwidth quickly,
both when flows arrive and leave, confirming POWERTCP’s
fast reaction to congestion as well as the available bandwidth.

Figure 4a showing convergence and Figure 5a showing
fairness and stability confirm the theoretical guarantees of
POWERTCP. Hereafter, all our results are based on the setup
described above, §4.1, using realistic workloads.
POWERTCP significantly improves short flows FCTs: In
Figure 6 we show the 99.9-percentile flow completion times
using POWERTCP and state-of-the-art datacenter congestion
control algorithms. At 20% network load (Figure 6a), POW-
ERTCP and q-POWERTCP improve 99.9-percentile flow
completion times for short flows (< 10KB) by 9% compared
to HPCC and by 80% compared to TIMELY, DCQCN and
HOMA. Even at moderate load of 60% (Figure 6b), short
flows significantly benefit from POWERTCP as well as q-
POWERTCP. Specifically, POWERTCP improves 99.9 per-
centile flow completion times for short flows by 33% com-
pared to HPCC, by 99% compared to HOMA and by 74%
compared to TIMELY and DCQCN. q-POWERTCP provides
even greater benefits to short flows showing an improvement
of 36% compared to HPCC and 82% compared to TIMELY
and DCQCN. Indeed, web search workload being buffer-
intensive, our results confirm the observations made in §2.
TIMELY being a current-based CC, does not explicitly con-
trol queuing latency, while HPCC, a voltage-based CC, does
not react as fast as POWERTCP to mitigate congestion result-
ing in higher flow completion times. Surprisingly, HOMA

performs the worst, showing an order-of-magnitude higher
FCTs for short flows at high loads as shown in Figure 6b.

We also evaluate across various loads in the range 20%≠
95% and show the 99.9-percentile flow completion times for
short flows in Figure 7a. In particular, we see that the benefits
of POWERTCP and q-POWERTCP are further enhanced as
the network load increases. POWERTCP (and q-POWERTCP)
improve the flow completion times of short flows by 36%
(and 55%) compared to HPCC. Short flows particularly bene-
fit from POWERTCP due its accurate control of buffer occu-
pancies close to zero. In Figure 7g we show the CDF of buffer
occupancies at 80% load. POWERTCP consistently maintains
lower buffer occupancy and cuts the tail buffer occupancy by
50% compared to HPCC.

Medium sized flows also benefit from POWERTCP: We
find that POWERTCP not only improves short flow perfor-
mance but also improves the 99.9-percentile flow completion
times for medium sized flows (100KB≠ 1M). In Figure 6
we see that POWERTCP consistently achieves better flow
completion times for medium sized flows. Specifically, at
20% network load (Figure 6a), POWERTCP improves 99.9-
percentile flow completion times for medium flows by 33%
compared to HPCC, by 76% compared to HOMA and by
62% (and 50%) compared to TIMELY (and DCQCN). In
Figure 6b, we observe similar benefits even at 60% load.

We notice from Figure 6a and Figure 6b that the perfor-
mance of q-POWERTCP deteriorates sharply for medium
sized flows. q-POWERTCP uses RTT for window update cal-
culations. While RTT can be a good congestion signal, it does
not signal under-utilization as opposed to INT that explicitly
notifies the exact utilization. As a result, medium flows with
q-POWERTCP experience 60% worse performance on aver-
age compared to POWERTCP and HPCC. We also observe
similar performance for TIMELY that uses RTT as a conges-
tion signal. Although delay is simple and effective for short
flows performance even at the tail, our results show that delay

60    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



(a) Short flows FCT with web-
search workload

(b) Long flows FCT with web-
search workload

(c) Short flows FCTs with web-
search + incasts

(d) Long flows FCT with web-
search + incasts

(e) Short flows FCTs with web-
search + incasts

(f) Long flows FCT with web-
search + incasts

(g) Buffer occupancy with web-
search workload at 80% load

(h) Buffer occupancy with web-
search + incasts

Figure 7: A detailed comparison of POWERTCP, q-POWERTCP and the state-of-the-art showing the benefits of POWERTCP and
the trade-offs of q-POWERTCP. Particularly POWERTCP outperforms the state-of-the-art across a range of network loads even
under bursty traffic. However, q-POWERTCP performs well for short flows but long flows cannot benefit from q-POWERTCP.

as a congestion signal is not ideal if not worse for medium
sized flows.
POWERTCP does not penalize long flows: Fast reaction to
available bandwidth makes POWERTCP ideal for best per-
formance across all flow sizes. We observe from Figure 6
that POWERTCP achieves flow completion times compara-
ble to existing algorithms, indicating that POWERTCP does
not trade throughput for low latency. Further, in Figure 7b
we show the 99.9-percentile flow completion times for long
flows across various loads. At low load, POWERTCP per-
forms similar to HPCC and performs 9% better compared
to HPCC at 90% network loads. However, we see that q-
POWERTCP is consistently 35% worse on average across
various loads compared to POWERTCP and HPCC.
POWERTCP outperforms under bursty traffic: We gener-
ate incast-like traffic described in §4.1 in addition to the web
search workload at 80% load. In Figure 7c and Figure 7d we
show the 99.9-percentile flow completion times for short and
long flows across different request rates for a request size of
2MB. Note that by varying request rates, we are essentially
varying the frequency of incasts. We observe that even un-
der bursty traffic, POWERTCP improves 99.9-percentile flow
completion times on average for short flows by 24% and for
long flows by 10% compared to HPCC. Further POWERTCP
outperforms at high request rates showing 33% improvement
over HPCC for short flows. On the other hand, q-POWERTCP
improves flows completion times for short flows but performs
worse across all request rates compared to HPCC.

We further vary the request size at a request rate of four
per second. Note that by varying the request size, we also
vary the duration of congestion. In Figure 7e and Figure 7f,

we show the 99.9-percentile flow completion times for short
and long flows. Specifically, in Figure 7e we observe that
flow completion times with POWERTCP gradually increase
with request size. POWERTCP, compared to HPCC, improves
flow completion times of short flows by 20% at 1MB request
size and improves by 7% at 8MB request size. At the same
time, POWERTCP does not sacrifice long flows performance
under bursty traffic. POWERTCP improves flow completion
times for long flows by 5% on average compared to HPCC. q-
POWERTCP’s performance similar to previous experiments
is on average 30% worse for long flows but 9% better for
short flows compared to HPCC. We show the CDF of buffer
occupancies under bursty traffic with 2MB request size and 16
per second request rate. Both POWERTCP and q-POWERTCP
reduce the 99 percentile buffer by 31% compared to HPCC.

We note that HOMA’s performance in our evaluation is
not in line with the results presented in [42]. Recent work [26]
reports similar performance issues with HOMA. We suspect
two possible reasons: (i) HOMA’s accuracy in controlling
congestion is specifically limited in our network setup with
an oversubscribed Fat-Tree topology where congestion at the
ToR uplinks is a possibility which cannot be controlled by a
receiver-driven approach such as HOMA. (ii) As pointed out
by [26], HOMA’s original evaluation considered practically
infinite buffers at the switches whereas switches in our setup
are limited in buffer and use Dynamic Thresholds to share
buffer. Further, even at 20% load, asymmetric RTTs in a Fat-
Tree topology (consequently RTTBytes) across ToR pairs
contributes to HOMA’s inaccuracy in controlling congestion.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    61



(a) POWERTCP reacts rapidly to the available bandwidth achieving good circuit utilization.
(b) POWERTCP significantly reduces
the tail latency

Figure 8: The benefits of POWERTCP in reconfigurable datacenter networks showing its ability to achieve good circuit utilization
while significantly reducing the tail latency compared to reTCP.

5 Case Study: Reconfigurable DCNs
Given POWERTCP’s rapid reaction to congestion and avail-
able bandwidth, we believe that POWERTCP is well suited for
emerging reconfigurable datacenter networks (RDCN) [44].
We now examine POWERTCP’s applicability in this con-
text through a case study. Congestion control in RDCNs is
especially challenging as the available bandwidth rapidly fluc-
tuates due to changing circuits. In this section, we evaluate
the performance of POWERTCP and compare against the
state-of-the-art reTCP [43] and HPCC using packet-level sim-
ulations in NS3. We implement both POWERTCP and HPCC
in the transport layer and limit their window updates to once
per RTT for a fair comparison with reTCP. POWERTCP and
HPCC flows initialize the TCP header with the unused option
number 36. Switches are configured to append INT metadata
to TCP options. It should be noted that TCP options are lim-
ited to 40 bytes. As a result, our implementation can only
support at most four hops round-trip path length.

We evaluate in a topology with 25 ToR switches with 10
servers each and a single optical circuit switch connected to
all the ToR switches. ToR switches are also connected to a
separate packet switched network with 25Gbps links. The
optical switch internally connects each input port to an output
port and cycles across 24 matchings in a permutation schedule
where the switch stays in a specific matching for 225µs (one
day) and takes 20µs to reconfigure to the next matching (one
night). In this setting, each pair of ToR switches has direct
connectivity through the circuit switch once over a length
of 24 matchings (one week). We use single-hop routing in
the circuit network and a maximum base RTT is 24µs. Note
that circuit-on time (i.e., one day) is approximately 10 RTTs.
The links between servers and ToR switches are 25Gbps and
circuit links are 100Gbps. We configure the ToR switches
to forward packets exclusively on the circuit network when
available. Switches are further equipped with per-destination
virtual output queues (VOQs). Our setup is in line with prior
work [43]. We set reTCP’s prebuffering to 1800µs based

on the suggestions in [43] and set to 600µs based on our
parameter sweep for the minimum required prebuffering in
our topology. We compare against both versions.

In Figure 8a, we show the time series of throughput and
VOQ length for a pair of ToR switches. Specifically, the
gray-shaded area in Figure 8a highlights the availability of
high bandwidth through the circuit-switched network. On
one hand, reTCP instantly fills the available bandwidth but
incurs high latency due to prebuffering before the circuit is
available. On the other hand, HPCC maintains low queue
lengths but does not fill the available bandwidth. In contrast,
POWERTCP fills the available bandwidth within one RTT
and maintains near-zero queue lengths and thereby achieves
both high throughput and low latency. We show the tail queu-
ing latency incurred by reTCP, HPCC and POWERTCP in
Figure 8b. We observe that POWERTCP improves the tail
queuing latency at least by 5◊ compared to reTCP. Our case
study reveals that fine-grained congestion control algorithms
such as POWERTCP can alleviate the circuit utilization prob-
lem in RDCNs without trading latency for throughput.

6 Related Work
Dealing with congestion has been an active research topic for
decades with a wide spectrum of approaches, including buffer
management [3, 10, 17] and scheduling [9, 25, 45, 46]. In the
following, we will focus on the most closely related works on
end-host congestion control.

Approaches such as [7, 51, 56] (e.g., DCTCP, D2TCP) rely
on ECN as the congestion signal and react proportionally.
Such algorithms require the bottleneck queue to grow up to a
certain threshold, which results in queuing delays. ECN-based
schemes remain oblivious to congestion onset and intensity.
Protocols such as TIMELY [41], SWIFT [34], CDG [23],
DX [35] rely on RTT measurements for window update calcu-
lations. TIMELY and CDG partly react to congestion based
on delay gradients, remaining oblivious to absolute queue
lengths. TIMELY, for instance, uses a threshold to fall back

62    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



to proportional reaction to delay instead of delay gradient.
SWIFT, a successor of TIMELY, only reacts proportionally to
delay. As a result, SWIFT cannot detect congestion onset and
intensity unless the distance from target delay significantly in-
creases. In contrast, q-POWERTCP also being a delay-based
congestion control algorithm updates the window sizes using
the notion of power. As a result, q-POWERTCP accurately
detects congestion onset even at near-zero queue lengths.

XCP [30], D3 [52], RCP [19] rely on explicit network feed-
back based on rate calculations within the network. However,
the rate calculations are based on heuristics and require pa-
rameter tuning to adjust for different goals such as fairness
and utilization. HPCC [36] introduces a novel use of in-band
network telemetry and significantly improves the fidelity of
feedback. Our work builds on the same INT capabilities to
accurately measure the bottleneck link state. However, as we
show analytically and empirically, HPCC’s control law then
adjusts rate and window size solely based on observed queue
lengths and lacks control accuracy compared to POWERTCP.
Our proposal POWERTCP uses the same feedback signal but
uses the notion of power to update window sizes leading to
significantly more fine-grained and accurate reactions.

Receiver-driven transport protocols such as NDP [22],
HOMA [42], and Aeolus [26] have received much attention
lately. Such approaches are conceptually different from clas-
sic transmission control at the sender. Importantly, receiver-
driven transport approaches make assumptions on the uni-
formity in datacenter topologies and oversubscription [22].
POWERTCP is a sender-based classic CC approach that uses
our novel notion of power and achieves fine-grained control
over queuing delays without sacrificing throughput.

7 Conclusion
We presented POWERTCP, a novel fine-grained congestion
control algorithm. By reacting to both the current state of the
network as well as its trend (i.e., power), POWERTCP im-
proves throughput, reduces latency, and keeps queues within
the network short. We proved that POWERTCP has a set of
desirable properties, such as fast convergence and stability
allowing it to significantly improve flow completion times
compared to the state-of-the-art. Its fast reaction makes POW-
ERTCP attractive for many dynamic network environments
including emerging reconfigurable datacenters which served
us as a case study in this paper. In our future work, we plan
to explore more such use cases.

Acknowledgments
We would like to thank our shepherd, Michael Schapira, as
well as the anonymous NSDI reviewers for their useful feed-
back. This work is part of a project that has received funding
from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme, consolidator project Self-Adjusting Networks (Ad-
justNet), grant agreement No. 864228, Horizon 2020, 2020-
2025.

References
[1] Broadcom. 12.8 tb/s strataxgs tomahawk 3 ether-

net switch series. https://www.broadcom.com/

products/ethernet-connectivity/switching/

strataxgs/bcm56980-series.

[2] Broadcom. 2020. 25.6 tb/s strataxgs tomahawk 4
ethernet switch series. https://www.broadcom.com/
products/ethernet-connectivity/switching/

strataxgs/bcm56990-series.

[3] Cisco nexus 9000 series switches. https://www.

cisco.com/c/en/us/products/collateral/

switches/nexus-9000-series-switches/

white-paper-c11-738488.html.

[4] Ns3 network simulator. https://www.nsnam.org/.

[5] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In Proceedings of the ACM SIGCOMM
2008 Conference, page 63–74, 2008.

[6] Mohammad Alizadeh and Tom Edsall. On the data path
performance of leaf-spine datacenter fabrics. In 2013
IEEE 21st annual symposium on high-performance in-
terconnects, pages 71--74. IEEE, 2013.

[7] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In Proceedings of the ACM SIGCOMM
2010 Conference, pages 63--74, 2010.

[8] Mohammad Alizadeh, Adel Javanmard, and Balaji Prab-
hakar. Analysis of dctcp: stability, convergence, and
fairness. ACM SIGMETRICS Performance Evaluation
Review, 39(1):73--84, 2011.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    63

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.nsnam.org/


[9] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. Pfabric: Minimal near-optimal datacen-
ter transport. In Proceedings of the ACM SIGCOMM
2013 Conference, page 435–446, 2013.

[10] Maria Apostolaki, Laurent Vanbever, and Manya
Ghobadi. Fab: Toward flow-aware buffer sharing on
programmable switches. In Proceedings of the 2019
Workshop on Buffer Sizing, pages 1--6, 2019.

[11] Mina Tahmasbi Arashloo, Yaron Koral, Michael Green-
berg, Jennifer Rexford, and David Walker. Snap: State-
ful network-wide abstractions for packet processing. In
Proceedings of the ACM SIGCOMM 2016 Conference,
page 29–43, 2016.

[12] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan
Schmid. On the complexity of traffic traces and impli-
cations. In Proc. ACM SIGMETRICS, 2020.

[13] Chen Avin and Stefan Schmid. Renets: Statically-
optimal demand-aware networks. In Proc. SIAM Sym-
posium on Algorithmic Principles of Computer Systems
(APOCS), 2021.

[14] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini Kari-
nou, Sophie Lange, Kai Shi, Benn Thomsen, and Hugh
Williams. Sirius: A flat datacenter network with
nanosecond optical switching. In Proceedings of the
ACM SIGCOMM 2020 Conference, page 782–797,
2020.

[15] Lawrence S Brakmo, Sean W O’Malley, and Larry L
Peterson. Tcp vegas: New techniques for congestion
detection and avoidance. In Proceedings of the confer-
ence on Communications architectures, protocols and
applications, pages 24--35, 1994.

[16] Yanpei Chen, Rean Griffith, Junda Liu, Randy H Katz,
and Anthony D Joseph. Understanding tcp incast
throughput collapse in datacenter networks. In Proceed-
ings of the 1st ACM workshop on Research on enterprise
networking, pages 73--82, 2009.

[17] Abhijit K Choudhury and Ellen L Hahne. Dynamic
queue length thresholds for shared-memory packet
switches. IEEE/ACM Transactions On Networking,
6(2):130--140, 1998.

[18] Intel Corporation. Intel Tofino, 2020. Re-
trieved Dec. 29, 2020 from https://www.

intel.com/content/www/us/en/products/

network-io/programmable-ethernet-switch/

tofino-series/tofino.html.

[19] Nandita Dukkipati and Nick McKeown. Why flow-
completion time is the right metric for congestion con-
trol. ACM SIGCOMM Computer Communication Re-
view, 36(1):59--62, 2006.

[20] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,
Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade,
Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. Projector: Agile
reconfigurable data center interconnect. In Proceedings
of the ACM SIGCOMM 2016 Conference, pages
216--229, 2016.

[21] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
operating systems review, 42(5):64--74, 2008.

[22] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the ACM SIGCOMM 2017 Conference,
page 29–42, 2017.

[23] David A Hayes and Grenville Armitage. Revisiting tcp
congestion control using delay gradients. In Interna-
tional Conference on Research in Networking, pages
328--341. Springer, 2011.

[24] Christopher V Hollot, Vishal Misra, Don Towsley, and
Wei-Bo Gong. A control theoretic analysis of red. In
Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications
Society (Cat. No. 01CH37213), volume 3, pages 1510--
1519. IEEE, 2001.

[25] Chi-Yao Hong, Matthew Caesar, and P Brighten God-
frey. Finishing flows quickly with preemptive schedul-
ing. ACM SIGCOMM Computer Communication Re-
view, 42(4):127--138, 2012.

[26] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. Ae-
olus: A building block for proactive transport in data-
centers. In Proceedings of the ACM SIGCOMM 2020
Conference, page 422–434, 2020.

[27] V. Jacobson. Congestion avoidance and control. In Sym-
posium Proceedings on Communications Architectures
and Protocols, SIGCOMM ’88, page 314–329, 1988.

[28] Cheng Jin, David X Wei, and Steven H Low. Fast tcp:
motivation, architecture, algorithms, performance. In
IEEE INFOCOM 2004, volume 4, pages 2490--2501.
IEEE, 2004.

64    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html


[29] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg,
Parveen Patel, and Ronnie Chaiken. The nature of data
center traffic: measurements & analysis. In Proceed-
ings of the 9th ACM SIGCOMM conference on Internet
measurement, pages 202--208, 2009.

[30] Dina Katabi, Mark Handley, and Charlie Rohrs. Conges-
tion control for high bandwidth-delay product networks.
In Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 89--102, 2002.

[31] Srinivasan Keshav. Mathematical foundations of com-
puter networking. Addison-Wesley, 2012.

[32] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In ACM SIGCOMM ’15 Demos, 2015.

[33] Janardhan Kulkarni, Stefan Schmid, and Pawel Schmidt.
Scheduling opportunistic links in two-tiered reconfig-
urable datacenters. In 33rd ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), 2021.

[34] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the
datacenter. In Proceedings of the ACM SIGCOMM
2020 Conference, page 514–528, 2020.

[35] Changhyun Lee, Chunjong Park, Keon Jang, Sue Moon,
and Dongsu Han. Accurate latency-based congestion
feedback for datacenters. In 2015 USENIX Annual Tech-
nical Conference (USENIX ATC 15), pages 403--415,
Santa Clara, CA, July 2015. USENIX Association.

[36] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc:
High precision congestion control. In Proceedings of
the ACM SIGCOMM 2019 Conference, pages 44--58,
2019.

[37] S.H. Low, F. Paganini, and J.C. Doyle. Internet conges-
tion control. IEEE Control Systems Magazine, 22(1):28-
-43, 2002.

[38] William M Mellette, Rajdeep Das, Yibo Guo, Rob
McGuinness, Alex C Snoeren, and George Porter. Ex-
panding across time to deliver bandwidth efficiency and
low latency. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
1--18, 2020.

[39] William M Mellette, Rob McGuinness, Arjun Roy, Alex
Forencich, George Papen, Alex C Snoeren, and George
Porter. Rotornet: A scalable, low-complexity, optical
datacenter network. In Proceedings of the ACM SIG-
COMM 2017 Conference, pages 267--280, 2017.

[40] Vishal Misra, Wei-Bo Gong, and Don Towsley. Fluid-
based analysis of a network of aqm routers supporting
tcp flows with an application to red. In Proceedings
of the conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,
pages 151--160, 2000.

[41] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the dat-
acenter. In Proceedings of the ACM SIGCOMM 2015
Conference, page 537–550, 2015.

[42] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the ACM SIGCOMM 2018 Conference,
page 221–235, 2018.

[43] Matthew K Mukerjee, Christopher Canel, Weiyang
Wang, Daehyeok Kim, Srinivasan Seshan, and Alex C
Snoeren. Adapting TCP for reconfigurable datacenter
networks. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
651--666, 2020.

[44] Matthew Nance Hall, Klaus-Tycho Foerster, Stefan
Schmid, and Ramakrishnan Durairajan. A survey of
reconfigurable optical networks. Optical Switching and
Networking, 41:100621, 2021.

[45] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah.
Flowtune: Flowlet control for datacenter networks. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 421--435, Boston,
MA, March 2017. USENIX Association.

[46] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: A central-
ized" zero-queue" datacenter network. In Proceedings
of the ACM SIGCOMM 2014 conference, pages 307--
318, 2014.

[47] Amar Phanishayee, Elie Krevat, Vijay Vasudevan,
David G Andersen, Gregory R Ganger, Garth A Gibson,
and Srinivasan Seshan. Measurement and analysis of
tcp throughput collapse in cluster-based storage systems.
In FAST, volume 8, pages 1--14, 2008.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    65



[48] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In Proceedings of the ACM SIGCOMM
2015 Conference, pages 123--137, 2015.

[49] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa Ammar, Ellen Zegura, Keon
Jang, Mohammad Alizadeh, Abdul Kabbani, and Amin
Vahdat. Annulus: A dual congestion control loop for
datacenter and wan traffic aggregates. In Proceedings of
the ACM SIGCOMM 2020 Conference, page 735–749,
2020.

[50] Stefan Schmid, Chen Avin, Christian Scheideler,
Michael Borokhovich, Bernhard Haeupler, and Zvi
Lotker. Splaynet: Towards locally self-adjusting net-
works. IEEE/ACM Transactions on Networking (ToN),
2016.

[51] Balajee Vamanan, Jahangir Hasan, and T.N. Vijayku-
mar. Deadline-aware datacenter tcp (d2tcp). In Pro-
ceedings of the ACM SIGCOMM 2012 Conference, page
115–126, 2012.

[52] Christo Wilson, Hitesh Ballani, Thomas Karagiannis,
and Ant Rowtron. Better never than late: Meeting dead-
lines in datacenter networks. In Proceedings of the ACM
SIGCOMM 2011 Conference, page 50–61, 2011.

[53] Jackson Woodruff, Andrew W Moore, and Noa Zilber-
man. Measuring burstiness in data center applications.
In Proceedings of the 2019 Workshop on Buffer Sizing,
2019.

[54] Doron Zarchy, Radhika Mittal, Michael Schapira, and
Scott Shenker. Axiomatizing congestion control. Pro-
ceedings of the ACM on Measurement and Analysis of
Computing Systems, 3(2):1--33, 2019.

[55] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proceedings of the 2017 Internet
Measurement Conference, pages 78--85, 2017.

[56] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. ACM SIGCOMM Computer Communication
Review, 45(4):523--536, 2015.

[57] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra
Padhye. Ecn or delay: Lessons learnt from analysis of
dcqcn and timely. In Proceedings of the 12th Interna-
tional on Conference on emerging Networking EXperi-
ments and Technologies, pages 313--327, 2016.

A Analysis
Our analysis is based on a a single bottleneck link model
widely used in the literature [24, 40, 54, 57]. Specifically, we
assume that all senders use the same protocol, transmit long
flows sharing a common bottleneck link with bandwidth b,
and have a base round trip time t (excluding queuing delays).
We denote at time t queue length as q(t), aggregate window
size as w(t), window size of a sender i as wi(t), forward prop-
agation delay between sender and bottleneck queue as t f , the
round-trip time as q(t) and a base round-trip time as t. Here
w(t) = Âi wi(t).
We additionally use the traditional model of queue length
dynamics which is independent of the control law [24, 40]

q̇(t) = w(t ≠ t f )
q(t) ≠b (9)

where q(t) is given by,

q(t) = q(t)
b

+ t (10)

Power at time t denoted by G(t) as defined in §3.1 is expressed
as,

G(t) = (q(t)+b · t)¸ ˚˙ ˝
voltage

·(q̇(t)+µ(t))¸ ˚˙ ˝
current

(11)

POWERTCP’s control law at a source i is given by,

wi(t +dt) = g ·
3

wi(t ≠q(t)) · e
f (t) +b

4
+(1≠ g) ·wi(t) (12)

where e and f (t) are given by,

e = b2 · t

f (t) = G(t ≠q(t)+ t f )

and b is the additive increase term and g œ (0,1] serves as the
weight given for new updates using EWMA. Both b and g are
parameters to the control law.

Using the properties of power (Property 1), the aggregate
window size at time t ≠ q(t) can be expressed in terms of
power as,

w(t ≠q(t)) = G(t ≠q(t)+ t f )
b

= f (t)
b

(13)

Suppose an ack arrives at time t acknowledging a segment,
time t ≠q(t) corresponds to the time when the acknowledged
segment was transmitted.

Theorem 1 (Stability). POWERTCP’s control law is
Lyapunov-stable as well as asymptotically stable with a
unique equilibrium point.

66    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Notation Description
b bottleneck bandwidth
q bottleneck queue length
t base RTT
t f sender to bottleneck delay
q round trip time RTT
wi window size of a flow i
w aggregate window size (of all flows)
g EWMA parameter
b additive increase
e desired equilibrium point
f feedback

li sending rate of a flow i
l Current: aggregate sending rate
n Voltage
G Power

Table 2: Key notations used in this paper. Additionally for
any variable say x, ẋ denotes its derivative with respect to
time i.e., dx

dt .

Proof. First, we rewrite Eq. 12 as follows to obtain the ag-
gregate window w,

Â
i

wi(t+dt)=Â
i

g ·
3

wi(t ≠q(t)) · e
f (t) +b

4
+Â

i
(1≠g) ·wi(t)

let b̂ = Âi b

w(t +dt) = g ·
3

w(t ≠q(t)) · e
f (t) + b̂

4
+(1≠ g) ·w(t)

by rearranging the terms in the above equation we obtain,

w(t +dt)≠w(t) = g ·
3
≠w(t)+ w(t ≠q(t)) · e

f (t) + b̂
4

dividing by dt on both sides in the above equation and us-
ing Euler’s first-order approximation, we derive the window
dynamics for POWERTCP as follows,

ẇ(t) = gr ·
3
≠w(t)+ w(t ≠q(t)) · e

f (t) + b̂
4

(14)

where gr = g
dt . Using Eq. 13 and substituting e = b2 ·t, Eq. 14

reduces to,

ẇ(t) = gr ·
1
≠w(t)+b · t+ b̂

2
(15)

In the system defined by Eq. 9 and Eq. 14, when the win-
dow and the queue length stabilize i.e., ẇ(t) = 0 and q̇(t) = 0,
it is easy to observe that there exists a unique equilibrium
point (we,qe) = (b ·t+ b̂, b̂). We now apply a change of vari-
able from t to t ≠ t f in Eq. 15 and linearize Eq. 15 and Eq. 9
around (we,qe),

dẇ(t ≠ t f ) =≠gr ·dw(t ≠ t f ) (16)

dq̇(t) =≠dq(t)
t

+ dw(t ≠ t f )
t

(17)

We now convert the above differential equations to matrix
form,

5
dq̇(t)
dẇ(t)

6
=
5
≠ 1

t
1
t

0 ≠gr

6
◊
5

dq(t)
dw(t)

6

It is then easy to observe that the eigenvalues of the system
are ≠ 1

t and ≠gr. Since t (base RTT) and gr = g
dt are both

positive, we see that both the eigenvalues are negative. This
proves that the system is both lyapunav stable and asymptoti-
cally stable.

Theorem 2 (Convergence). After a perturbation, POW-
ERTCP’s control law exponentially converges to equilibrium
with a time constant dt

g where dt is the window update interval.
Proof. A perturbation at time t = 0 causes the window to
shift from we = c ·t+ b̂ to say winit . We solve the differential
equation in Eq. 15 and obtain the following equation,

w(t) = we +(winit ≠we) · e≠gr ·t
¸ ˚˙ ˝

exponential decay

(18)

From Eq. 18 we can see that, for any error e = we ≠winit
caused by a perturbation, e exponentially decays with a time
constant 1

gr
= dt

g . Hence for e to decay 99.3%, it takes 5·d
g

time.

Theorem 3 (Fairness). POWERTCP is bi weighted propor-
tionally fair, where bi is the additive increase used by a flow
i.
Proof. Recall that POWERTCP’s control law for each flow i
is defined as,

wi(t +dt) = g ·
3

wi(t ≠q(t)) · e
f (t) +bi

4
+(1≠ g) ·wi(t)

From the proof of Theorem 1, we know that the equilib-
rium point for aggregate window size and queue length is
(we,qe) = (b · t+ b̂, b̂). Using this equilibrium we can also
obtain the equilibrium value for f (t) as,

fe = (b̂+b · t) ·b
We can then show that wi has an equilibrium point.

(wi)e =
b̂+b · t

b̂
·bi

We use the argument that window sizes and rates are syn-
onymous especially that POWERTCP uses pacing with rate
ri = wi

t . We can then easily observe that the rate allocation
is approximately max-min fair if bi are small enough but bi
proportionally fair in general.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    67



B Justifying the Simplified Model
We considered a simplified control law model to study ex-
isting control laws in §2. Here we justify how the simplified
model approximately captures the existing control laws. Our
simplified model for congestion window update at time t +dt
is defined in Eq. 19 as a function of current congestion win-
dow size, a target e, the feedback f (t), an additive increase b
and an exponential moving average parameter g.

wi(t +dt) = g ·
3

wi(t) ·
e

f (t) +b
4

¸ ˚˙ ˝
update

+(1≠ g) ·wi(t)

¸ ˚˙ ˝
EWMA

(19)

where e and f (t) are given by,

e =

Y
_]

_[

b · t queue-length based CC
t delay-based CC
1 RTT-gradient based CC

(20)

f (t) =

Y
_]

_[

q(t ≠q(t)+ t f )+b · t queue-length based CC
q(t≠q(t)+t f )

b + t delay-based CC
q̇(t≠q(t)+t f )

b +1 RTT-gradient based CC
(21)

We first use Euler’s first order approximation and obtain the
aggregate window (Âw) dynamics for the simplified model,

ẇ(t) = g
dt

·
3

w(t) · e
f (t) ≠w(t)+b

4
(22)

In order for the system to stabilize, we require q̇(t) = 0 and
ẇ(t) = 0. Using Eq. 9 and Eq. 22 and applying equilibrium
conditions and assuming that f (t) stabilizes,

qe = we ≠b · t (23)

we =
b̂

1≠ e
f

(24)

Recall that b̂ = Âbi , the sum of additive increase terms of all
flows sharing a bottleneck. To show whether there exists a
unique equilibrium point, it remains to show whether Eq. 23
and Eq. 24 have a unique solution for we and qe. We now
show how the simplified model captures existing control laws
and show the equilibrium properties.

Queue length or inflight-based control law: Substituting
e = b · t and f (t) = q(t ≠ q(t)+ t f )+ b · t, we express the
simplified queue length based control law as,

wi(t+dt) = g ·
3

wi(t) ·b · t
q(t ≠q(t)+ t f )+b · t +b

4
+(1≠g) ·wi(t)

(25)

notice that the update is an MIMD based on inflight bytes.
Eq. 25 captures control laws based on inflight bytes; for ex-
ample HPCC [36].

A system defined by queue length based control law (Eq. 25
and the queue length dynamics (Eq. 9, there exists a unique
equilibrium point. It can be observed that Eq. 24 for queue
length based control law gives we = b · t+ b̂ and qe = b̂.

Delay-based control law: Substituting e = t and f (t) =
q(t≠q(t)+t f )

b +t, we express the simplified delay-based control
law as,

wi(t+dt) = g ·
A

wi(t) · t
q(t≠q(t)+t f )

b + t
+b

B
+(1≠g) ·wi(t) (26)

where the window update is an MIMD based on RTT. Eq. 26
captures control laws based on RTT; for example FAST [28].

Similar to queue-length based CC, a system defined by
delay-based control law (Eq. 26 and the queue length dy-
namics (Eq. 9, there exists a unique equilibrium point. It can
be observed that Eq. 24 for delay-based control law gives
we = b · t+ b̂ and qe = b̂.

RTT-gradient based control law: Substituting e = 1 and
f (t) = q̇(t≠q(t)+t f )

b + 1, we express the simplified RTT-
gradient based control law as,

wi(t+dt) = g ·
A

wi(t) ·1
q̇(t≠q(t)+t f )

b +1
+b

B
+(1≠g) ·wi(t) (27)

where the window update is an MIMD based on RTT-gradient.
Eq. 27 by rearranging the terms, captures control laws based
on RTT-gradient such as TIMELY [41].

In contrast to queue-length and delay-based CC, RTT-
gradient based CC has no unique equilibrium point since
f (t) = q̇(t≠q(t)+t f )

b +1 stabilizes when q̇ = 0. However only
q̇ = 0 leads to window dynamics Eq. 27 also to stabilize
(ẇ = 0) at any queue lengths. As a result under RTT-gradient
control law, Eq. 23 and Eq. 24 do not have a unique solution
and consequently we can state that RTT-gradient based CC
has no unique equilibrium point.

68    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



C HOMA’s Overcommitment

(a) Over-Commitment: 1 (b) Over-Commitment: 2

(c) Over-Commitment: 3 (d) Over-Commitment: 4

(e) Over-Commitment: 5 (f) Over-Commitment: 6

Figure 9: HOMA’s reaction to 255 : 1 incast at different over-
commitment levels.

(a) Over-Commitment: 1 (b) Over-Commitment: 2

(c) Over-Commitment: 3 (d) Over-Commitment: 4

(e) Over-Commitment: 5 (f) Over-Commitment: 6

Figure 10: HOMA’s reaction to 10 : 1 incast at different over-
commitment levels.

(a) Over-Commitment: 1 (b) Over-Commitment: 2

(c) Over-Commitment: 3 (d) Over-Commitment: 4

(e) Over-Commitment: 5 (f) Over-Commitment: 6

Figure 11: HOMA’s fairness at different over-commitment
levels.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    69



D q-POWERTCP
We present q-POWERTCP: standalone version of POW-
ERTCP which does not require switch support and only re-
quires accurate packet timestamp support at the end-host.
Algorithm 2: q-POWERTCP (w/o switch support)

1 /* tc is the timestamp upon ack arrival */

Input : ack
Output : cwnd, rate

2 procedure NEWACK(ack):
3 cwndold = GETCWND(ack.seq)
4 normPower = NORMPOWER(ack)
5 UPDATEWINDOW(normPower, cwndold)
6 rate = cwnd

t
7 prevRT T = RT T
8 t prev

c = tc
9 UPDATEOLD(cwnd,ack.seq)

10 function NORMPOWER(ack):
11 dt = tc ≠ t prev

c

12 q̇ = RT T≠prevRT T
dt Û dRT T

dt

13 Gnorm = (q̇+1)◊RT T
t Û Gnorm :Normalized power

14 Gsmooth = Gsmooth·(t≠Dt)+Gnorm·Dt
t

15 return Gsmooth
16 function UPDATEWINDOW(power, ack):
17 if ack.seq < lastU pdated then Û per RTT
18 return cwnd
19 end if
20 cwnd = g◊ ( cwndold

normPower +b)+(1≠ g)◊ cwnd
21 Û g : EWMA parameter
22 Û b: Additive Increase
23 lastU pdated = snd_nxt
24 return cwnd

70    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association


	Introduction
	 Motivation 
	Desirable Control Law Properties
	Drawbacks of Existing Control Laws
	Lessons Learned and Design Goals

	Power-Based Congestion Control
	The Notion of Power
	Benefits of Power-Based CC
	The PowerTCP Algorithm
	Properties of PowerTCP
	-PowerTCP: Standalone Version
	Deploying PowerTCP

	Evaluation
	Setup
	Results

	Case Study: Reconfigurable DCNs
	Related Work
	Conclusion
	Analysis
	Justifying the Simplified Model
	HOMA's Overcommitment
	-PowerTCP

