P4: Protocol-Independent Packet Processors
Guest Lecture ECEN5013, September 29th, 2015

Oliver Michel @' University of Colorado

Next Generation Networks Research Group Boulder

Outline

1. SDN/Open Flow

2. Open Flow Limitations

3. Protocol-Independent Processing

4. Abstract Forwarding Model and the P4 Language
5. Demo

0. Conclusion

SDN in one slide

(==

&
Data Plane /U\e/ \
u\

SDN in one slide

Integrated Control Plane Ej """""""""""""" Ej/

Data Plane / \Ej/ \
®—_

SDN in one slide

(==

&
Data Plane /U\e/ \
u\

SDN in one slide

Controller

Decoupled Control Plane —]

/
/
S

Data Plane / \ / \
=
\

SDN in one slide

SDN Applications Routing Firewall NAT

Controller

Decoupled Control Plane —]

,’// ': é/
Data Plane / \ ;' / \
@\

OpenFlow in one slide

* open protocol that gives
applications control over
a switches data plane

e designed around a set of
header match fields and
forwarding actions

Control Application

class Forwarder < Controller

def packet_in dpid, message

flow_mod(message.match, PORT_5)

packet_out(message, PORT_5)

end
end

(e.g. Floodlight, Ryu, Trema, yanc)

OF Control Platform

!

packet_in={port=2, msg=...}

!

~ TCPSession

stats={{flowid=1, packet_#=123}} i
|

|

Switch with OF Interface

Port 2

Port 5

y v

/

\

match={dst.ip==128.138.5.233},
action={output: 5}

OF Protocol

OpenFlow Match/Action

enum oxm_ofb_match_fields {

OFPXMT_OFB_IN_PORT,

OFPXMT_OFB_IN_PHY_PORT,

OFPXMT_OFB_METADATA,

OFPXMT_OFB_ETH_DST ,

OFPXMT_OFB_ETH_SRC ,

OFPXMT_OFB_ETH_TYPE ,
¢ TCA I\/l I\/l O d e | OFPXMT_OFB_VLAN_VID ,

OFPXMT_OFB_VLAN_PCP,

OFPXMT_OFB_IP_DSCP,
OFPXMT_OFB_IP_ECN,

enum ofp_action_type {
OFPAT_OUTPUT,

OFPXMT_OFB_IP_PROTO ,

OFPAT_COPY_TTL_OUT,

* OF Wire Protocol 1.4 (Oct OFPOIT 0P IPVi DS OFPAT_COPY_TTLIN,

OFPXMT_OFB_TCP_SRC | OFPAT_SET_MPLS_TTL,

] . OFPXMT_OFB_TCP_DST , OFPAT_DEC_MPLS_TTL,
201 3) - 41 match header fields OFPXMT_OFB UDP_SRC. OFPAT_PUSH_VLAN,
OFPXMT_OFB_SCTP_SRC , OFPAT_POP_VLAN,
OFPXMT_OFB_SCTP_DST , OFPAT_PUSH_MPLS,
OFPXMT_OFB_ICMPV4_TYPE, OFPAT_POP_MPLS,
. OFPXMT_OFB_ICMPV4_CODE
o “OFR > | OFPAT_SET_QUEUE,
Most H/W switches only Gre .o AR OF
OFPXMT_OFB_ARP_TPA , OFPAT_SET_NW_TTL,

support limited match/action [l OFPAT DEC_NW_TTL.

OFPXMT_OFB_ARP_THA , OFPAT_SET _FIELD,

set (Fthernet | | P, (TC P, OFPXMT OFBIPVE DST OFPAT_PUSH_PBB,

OFPXMT_OFB_IPV6_FLABEL , OFPAT POP_PBB,

OFPXMT_OFB_ICMPV6_TYPE .
I\/l P LS)) d ye tO AS | C OFPXMT_OFB_ICMPV6_CODE | _OFPAT—EXPERlMENTER
OFPXMT_OFB_IPV6_ND_TARGET, ,
: . : OFPXMT_OFB_IPV6_ND_SLL,
| M t at I0ONS OFPXMT_OFB_IPV6_ND_TLL,
OFPXMT_OFB_MPLS_LABEL,
OFPXMT_OFB_MPLS_TC,
OFPXMT_OFP_MPLS_BOS,
OFPXMT_OFB_PBB_ISID,
OFPXMT_OFB_TUNNEL_ID,
OFPXMT_OFB_IPV6_EXTHDR,

OFPXMT_OFB_PBB_UCA

Open Flow is a balancing act

e forwarding abstraction balancing...

1. general match/action (TCAM model)

2. fixed-function switch ASICs (often only 12 fixed tields)
e Why?

* |long development cycles and major cost require very
clear long-time guidelines

Enabling Innovation”

ARP ICMP UDP SCTP RSVP
IP ECN IGMP L2TP PPP DNS
Ethernet BGP DHCP HTTP
SNMP IPsec TLS NNTP POP

OpenFlow Original Paper
SIGCOMM CCR 38/2

OpenFlow: Enabling Innovation in Campus Networks

March 14, 2008

Nick McKeown Tom Anderson Hari Balakrishnan
Stanford University University of Washington MIT
Guru Parulkar Larry Peterson Jennifer Rexford
Stanford University Princeton University Princeton University
Scott Shenker Jonathan Turner
University of California, Washington University in
Berkeley St. Louis
ABSTRACT is almost no practical way to experiment with new network

This whitepaper proposes OpenFlow: a way for researchers
to run experimental protocols in the networks they use ev-
ery day. OpenFlow is based on an Ethernet switch, with
an internal flow-table, and a standardized interface to add
and remove flow entries. Our goal is to encourage network-
ing vendors to add OpenFlow to their switch products for
deployment in college campus backbones and wiring closets.
We believe that OpenFlow is a pragmatic compromise: on
one hand, it allows researchers to run experiments on hetero-
geneous switches in a uniform way at line-rate and with high
port-density; while on the other hand, vendors do not need
to expose the internal workings of their switches. In addition
to allowing researchers to evaluate their ideas in real-world
traffic settings, OpenFlow could serve as a useful campus
component in proposed large-scale testbeds like GENI. Two
buildings at Stanford University will soon run OpenFlow
networks, using commercial Ethernet switches and routers.
We will work to encourage deployment at other schools; and
We encourage you to consider deploying OpenFlow in your
university network too.

Categories and Subject Descriptors
C.2 [Internetworking]: Routers

General Terms
Experimentation, Design

Keywords

Ethernet switch, virtualization, flow-based

1. THE NEED FOR PROGRAMMABLE
NETWORKS

Networks have become part of the critical infrastructure
of our businesses, homes and schools. This success has been
both a blessing and a curse for networking researchers; their
work is more relevant, but their chance of making an im-
pact is more remote. The reduction in real-world impact of
any given network innovation is because the enormous in-
stalled base of equipment and protocols, and the reluctance
to experiment with production traffic, which have created an
exceedingly high barrier to entry for new ideas. Today, there

protocols {e.g., new routing protocols, or alternatives to IP)
in sufficiently realistic settings (e.g., at scale carrying real
traffic) to gain the confidence needed for their widespread
deployment. The result is that most new ideas from the net-
working research community go untried and untested; hence
the commonly held belief that the network infrastructure has
“ossified”.

Having recognized the problem, the networking commu-
nity is hard at work developing programmable networks,
such as GENI [1] a proposed nationwide research facility
for experimenting with new network architectures and dis-
tributed systems. These programmable networks call for
programmable switches and routers that (using virfualiza-
tion) can process packets for multiple isolated experimen-
tal networks simultancously. For example, in GENI it is
envisaged that a researcher will be allocated a slice of re-
sources across the whole network, consisting of a portion
of network links, packet processing clements (e.g. routers)
and end-hosts; researchers program their slices to behave as
they wish. A slice could extend across the backbone, into
access networks, into college campuses, industrial research
labs, and include wiring closets, wireless networks, and sen-
sor networks.

Virtualized programmable networks could lower the bar-
rier to entry for new ideas, increasing the rate of innovation
in the network infrastructure. But the plans for nationwide
facilities are ambitious (and costly), and it will take years
for them to be deployed.

This whitepaper focuses on a shorter-term question closer
to home: As researchers, how can we run erperiments in
our campus networks? If we can figure out how, we can
start soon and extend the technique to other campuses to
benefit the whole community.

To meet this challenge, several questions need answering,
including: In the early days, how will college network admin-
istrators get comfortable putting experimental equipment
(switches, routers, access points, etc.) into their network?
How will researchers control a portion of their local net-
work in a way that does not disrupt others who depend on
it? And exactly what functionality is needed in network
switches to enable experiments? QOur goal here is to propose
a new switch feature that can help extend programmability
into the wiring closet of college campuses.

One approach - that we do not take - is to persuade

Enabling Innovation”

ARP ICMP UDP SCTP RSVP
IP ECN IGMP L2TP PPP DNS
Ethernet BGP DHCP HTTP
SNMP [Psec TLS NNTP POP

e |[imited to existing headers
header fields

* NO support for custom
encapsulating) protocols

« NVGRE, VXLAN, STT

OpenFlow Original Paper

OpenFlow: Enabling Innovation in Campus Networks

March 14, 2008

Nick McKeown Tom Anderson Hari Balakrishnan
Stanford University University of Washington MIT
Guru Parulkar Larry Peterson Jennifer Rexford
Stanford University Princeton University Princeton University
Scott Shenker Jonathan Turner
University of California, Washington University in
Berkeley St. Louis

ABSTRACT

This whitepaper proposes OpenFlow: a way for researchers
to run experimental protocols in the networks they use ev-
ery day. OpenFlow is based on an Ethernet switch, with
an internal flow-table, and a standardized interface to add
and remove flow entries. Our goal is to encourage network-
ing vendors to add OpenFlow to their switch products for
deployment in college campus backbones and wiring closets.
We believe that OpenFlow is a pragmatic compromise: on
one hand, it allows researchers to run experiments on hetero-
geneous switches in a uniform way at line-rate and with high
port-density; while on the other hand, vendors do not need
to expose the internal workings of their switches. In addition
to allowing researchers to evaluate their ideas in real-world
traffic settings, OpenFlow could serve as a useful campus
component in proposed large-scale testbeds like GENI. Two
buildings at Stanford University will soon run OpenFlow
networks, using commercial Ethernet switches and routers.
We will work to encourage deployment at other schools; and
We encourage you to consider deploying OpenFlow in your
university network too.

Categories and Subject Descriptors
C.2 [Internetworking|: Routers

General Terms

Experimentation, Design

Keywords

Ethernet switch, virtualization, flow-based

1. THE NEED FOR PROGRAMMABLE
NETWORKS

Networks have become part of the critical infrastructure
of our businesses, homes and schools. This success has been
both a blessing and a curse for networking researchers; their
work is more relevant, but their chance of making an im-
pact is more remote. The reduction in real-world impact of
any given network innovation is because the enormous in-
stalled base of equipment and protocols, and the reluctance
to experiment with production traffic, which have created an
exceedingly high barrier to entry for new ideas. Today, there

is almost no practical way to experiment with new network
protocols (e.g., new routing protocols, or alternatives to IP)
in sufficiently realistic settings (e.g., at scale carrying real
traffic) to gain the confidence needed for their widespread
deployment. The result is that most new ideas from the net-
working research community go untried and untested; hence
the commonly held belief that the network infrastructure has
“ossified”.

Having recognized the problem, the networking commu-
nity is hard at work developing programmable networks,
such as GENT [1] a proposed nationwide research facility
for experimenting with new network architectures and dis-
tributed systems. These programmable networks call for
programmable switches and routers that (using virtueliza-
tion) can process packets for multiple isolated experimen-
tal networks simultancously. For example, in GENI it is
envisaged that a researcher will be allocated a slice of re-
sources across the whole network, consisting of a portion
of network links, packet processing elements (e.g. routers)
and end-hosts; researchers program their slices to behave as
they wish. A slice could extend across the backbone, into
access networks, into college campuses, industrial research
labs, and include wiring closets, wireless networks, and sen-
sor networks.

Virtualized programmable networks could lower the bar-
rier to entry for new ideas, increasing the rate of innovation
in the network infrastructure. But the plans for nationwide
facilities are ambitious (and costly), and it will take years
for them to be deployed.

This whitepaper focuses on a shorter-term question closer
to home: As researchers, how can we run experiments in
our campus networks? If we can figure out how, we can
start soon and extend the technique to other campuses to
benefit the whole community.

To meet this challenge, several questions need answering,
including: In the ecarly days, how will college network admin-
istrators get comfortable putting experimental equipment
(switches, routers, access points, etc.) into their network?
How will researchers control a portion of their local net-
work in a way that does not disrupt others who depend on
it? And exactly what functionality is needed in network
switches to enable experiments? Our goal here is to propose
a new switch feature that can help extend programmability
into the wiring closet of college campuses.

One approach - that we do not take - is to persuade

ldea

 implement tlexible mechanisms for parsing packets and
matching (arbitrary) headers fields through common
interface

e Instead of repeatedly extending OF standard

P4 Goals

1.Recontigurabillity
2.Protocol-independence

3.larget Independence

But switches still have ASICs?

e Yes, but...

 new custom ASICs can achieve such flexibility at
terabit speeds

* some switches are more programmable than others:
« FPGA (Xilinx, Altera, Corsa)
 NPU (Ezchip, Netronome)

« CPU(OVS, ...)

10

P4 Language

P4 program configures
forwarding behavior (abstract
forwarding model)

e express serial dependencies
(e.g. ARP/L3 Routing)

P4 compiller translates into a
target-specitic representation

* OF can still be used to install
and query rules once
forwarding model is defined

SDN Control Plane

Populating:
Installing and
querying rules Classic

OpenFlow

Configuration:
P4 Program

Compiler

Parser & Table Rule
Configuration Translator

Target Switch

11

P4 Forwarding Model / Runtime

Switch

Parser

Match/Action
Tables

Packet Metadata

Egress Queues

12

P4 Forwarding Model / Runtime

L2L3.p4

Switch

Parser

Match/Action
Tables

Packet Metadata

Egress Queues

12

P4 Forwarding Model / Runtime

N
L2L3.p4
COMPILE
Switch
Parser Match/Action
Tables

Packet Metadata

Egress Queues

12

P4 Forwarding Model / Runtime

N
L2L3.p4
COMPILE
Switch
Parser Match/Action
Tables

Packet Metadata

Egress Queues

12

P4 Forwarding Model / Runtime

L2L3.p4

COMPILE

Routing Firewall

NAT

Controller

O

Switch

Parser

Match/Action
Tables

Packet Metadata

Egress Queues

12

P4 Forwarding Model / Runtime

Routing Firewall NAT
N
L2L3.p4
Controller
COMPILE .
i
n
1]
Switch
Parser Match/e(zlzltfon
Tat;le

Packet Metadata

Egress Queues

12

P4 Forwarding Model / Runtime

Routing Firewall NAT
N
L2L3.p4
Controller
COMPILE N
/;7
n
'/II
v Switch /!
/1y
T
Match/e«/ztfon
- — Tables
:,‘ . T o 5 K I, I’
: Py
w oy mEgress Queues

=

52

Packet Metadata

>

>

12

P4 Forwarding Model / Runtime

Routing Firewall NAT
Controller
COMPILE N
/;7
n
'/II
v Switch /!
I/Il
]
Match/e«/ztfon
- — Tables
:,‘ . T o 5 K I, I’
: Py
w oy mEgress Queues

=

52

Packet Metadata

>

>

12

P4 Forwarding Model / Runtime

Routing Firewall NAT
AN
OF1-3.p4
Controller
COMPILE N
/;7
n
'/II
v Switch /!
/1y
T
Match/e«/ztfon
- — Tables
:,‘ . T o 5 K I, I’
: Py
w oy mEgress Queues

=

52

Packet Metadata

>

>

12

P4 Forwarding Model / Runtime

Routing Firewall NAT
AN
OF1-3.p4
Controller
COMPILE !
Open:Flow 1.3
i
\4 Switch /!
/1y
Ty
Match/e«/ztfon
; Tables'
e - 5 I
.I«: Z 'I ; I’
I .
" —>
o calnlisiuisd) » gress Queues) ‘
o " /"‘ —
Packet Metadata

P4 Parsing

header vlan {
fields {
pcp : 3;
cfi : 1;
vid : 12;
ethertype : 16;
¥
¥

parser start {
ethernet;

}

parser ethernet {
switch(ethertype) {

}

}

case Ox8100: vlan;
case 0x9100: vlan;
case Ox800: 1ipv4;

13

P4 Actions

action add_mTag(Cupl, up2, downl, downZ, egr_spec) {
add_header(mTag);
copy_field(mTag.ethertype, vlan.ethertype);
set_field(vlan.ethertype, 0xaaaa);
set_field(mTag.upl, upl);
set_field(mTag.up2, up2);
set_field(mTag.downl, downl);
set_field(mTag.downZ2, down2);

14

P4 Match/Action

table mTag_table {
reads {

ethernet.dst_addr :

¥

actions {
add_mTag;

¥
¥

exact; vlan.vid :

exact;

15

Demo

—nvironment

| Mininet |
i P4 Software Switch i
| z = z |
! 10.0.0.1 :
: 10.0.0.10 00:aa:bb:00:00:00 10.0.1.10 :
: 00:04:00:00:00:00 10.0.1.1 00:04:00:00:00:01 :
| 00:aa:bb:00:00:01 !
| |

16

Demo

—nvironment

Apache Thrift |

Thrift Table Access API :

:

|

|

[}

__ |
! Mininet |
i P4 Software Switch i
| z & v =
! 10.0.0.1 :
: 10.0.0.10 00:aa:bb:00:00:00 10.0.1.10 :
: 00:04:00:00:00:00 10.0.1.1 00:04:00:00:00:01 :
! 00:aa:bb:00:00:01 !
| |

16

Demo

—nvironment

add_arp 10.0.1.10 00:04:00:00:01

add_route 10.0.0.10/32 10.0.0.10 1

Thrift Table Access API

| * Mininet
i P4 Software Switch

| z = z

! 10.0.0.1

: 10.0.0.10 00:aa:bb:00:00:00 10.0.1.10

1 00:04:00:00:00:00 10.0.1.1 00:04:00:00:00:01

| - . .

:

|

00:aa:bb:00:00:01

16

Demo Environment

add_arp 10.0.1.10 00:04:00:00:01

add_route 10.0.0.10/32 10.0.0.10 1

Thrift Table Access API

RPC
i * Mininet |
i P4 Software Switch i
= I 5 -a T :
! — 10.0.0.1 =l !
! 0.0.0.10 00:aa:bb:00:00:00 10.0.1, !
: 00:04:00:00:007 10.0.1.4 00:04:00:00:00:01 !
! 00:aa:bb:00:00:01 !
| |

Multiple Tables

ipv4_match
I

IPv4 dst

——L

next hop IPv4, phy port

17

Multiple Tables

ipv4_match

IPv4 dst

—L—

next hop IPv4, phy port

forward

next hop IPv4

——p| eth dst addr

17

Multiple Tables

ipv4_match
)

IPv4 dst ———»

next hop IPv4, phy port

forward

next hop IPv4

——p| eth dst addr

send_frame

phy port

eth src addr

17

Multiple Tables

ipv4_match
I

IPv4 dst

|
——L

next hop IPv4, phy port

forward
)

|
next hop IPv4 ——»

|
phy port ———»| eth src addr

10.0.0.10/32
10.0.1.10/32

10.0.0.10
10.0.1.10

]
2

eth dst addr

17

Multiple Tables

ipv4_match
I

IPv4 dst

|
—L—»

next hop IPv4, phy port

forward
)

|
next hop IPv4 ——»

send_frame
)

phy port

|
I>

eth src addr

10.0.0.10/32
10.0.1.10/32

10.0.0.10 1
10.0.1.10 2

eth dst addr

10.0.0.10
10.0.1.10

00:04:00:00:00:00
00:04:00:00:00:01

17

Multiple Tables

ipv4_match
I

IPv4 dst

|
——L

next hop IPv4, phy port

forward
)

next hop IPv4

|
L

send_frame
)

phy port

|
I>

eth src addr

eth dst addr

10.0.0.10/32 10.0.0.10 1
10.0.1.10/32 10.0.1.10 2
10.0.0.10 00:04:00:00:00:00
10.0.1.10 00:04:00:00:00:01
1 00:aa:bb:00:00:00
2 00:aa:bb:00:00:01

17

Parser

parser start {

return parse_ethernet;

}

18

Parser

parser start {
return parse_ethernet;

}

parser parse_ethernet {

extract(ethernet);
return select(latest.etherType) {
ETHERTYPE_IPV4 : parse_ipv4;

default: 1ingress;

18

Parser

parser start {
return parse_ethernet;

}

parser parse_ethernet {
extract(ethernet);
return select(latest.etherType) {
ETHERTYPE_IPV4 : parse_ipv4;

default: 1ingress;

parser parse_ipv4 {
extract(ipv4);
return ingress;

18

Tables

table 1ipv4_match {
reads {
1pv4.dstAddr

}

actions {
set_nhop;
_drop;

¥
size: 1024;

19

Tables

table 1ipv4_match {
reads {
1pv4.dstAddr

}

actions {
set_nhop;
_drop;

¥
size: 1024;

Lpm;

table forward {
reads {
routing_metadata.nhop_ipv4

}

actions {
set_dmac;
_drop;

ks

size: 512;

exact;

19

Tables

table 1ipv4_match { table forward {
reads { reads {
1pv4.dstAddr : 1pm; routing_metadata.nhop_1ipv4
3 ks
actions { actions {
set_nhop; set_dmac;
_drop; _drop;

¥ ks
size: 1024; size: 512;

table send_frame {
reads {
standard_metadata.egress_port: exact;
¥
actions {
rewrite_mac;
_drop;
3

size: 256;

. exact;

19

Tables

table 1ipv4_match {
reads {

1pv4.dstAddr

}

actions {
set_nhop;
_drop;

¥
size: 1024;

table send_frame {
reads {

Lpm;

table forward {
reads {

routing_metadata.nhop_ipv4 : exact;

}

actions {
set_dmac
_drop;

ks

size: 512;

standard_metadata.egress_port: exact;

¥

actions {
rewrite_mac;
_drop;

size: 256;

)

control ingress {
apply(ipv4_match);
apply(forward);

¥

control egress {
apply(send_frame);

}

Actions

action set_nhop(nhop_ipv4, port) {
modify_field(routing_metadata.nhop_ipv4, nhop_ipv4);

modify_field(standard_metadata.egress_spec, port);
add_to_field(ipv4.ttl, -1);

20

Actions

action set_nhop(nhop_ipv4, port) {
modify_field(routing_metadata.nhop_ipv4, nhop_ipv4);
modify_field(standard_metadata.egress_spec, port);
add_to_field(ipv4.ttl, -1);

python ../../cli/pd_cli.py
simple_router
L p4_pd_rpc.simple_router
$PWD/of-tests/pd_thrift:$PWD/../../submodules/oft-infra
"add_entry 1ipv4_match 10.0.1.10 32 set_nhop 10.0.1.10 2"
localhost:22222

20

DEMO

Conclusion / P4 in two slides

‘ High-Level Language \

| Frontend Compiler |
ntermediate Representation

Configuration

22

Conclusion / P4 in two slides

High-Level Language P4
| Frontend Compiler |
Intermediate Representation TDG
| Backend Compiler |
Switch
"something
Packet Forwarding target-
Engine specific"
e T —

Configuration

22

Conclusion / P4 in two sl

ides

‘ Control Plane \

\/

Wire protocol

add, modify, delete
flow entries, etc.

Switch

Engine

Packet Forwarding

Runtime

23

Conclusion / P4 in two slides

Control Plane

OpenFlow

Wire protocol

add, modify, delete
flow entries, etc.

A
OpenFlow

Switch

Packet Forwarding
Engine

Runtime

23

DISCUSSION/Q&A

oliver.michel@colorado.edu

BACKUP SLIDES

Control Plane/Data Plane Recap

e Control Plane

e set up state Iin routers

* determines how and where packets are forwarded
 Data Plane

e actual processing and delivery of packets based on
state established by control plane

20

SDNChip [SIGCOMM 2013

Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN

Pat Bosshart', Glen Gibb?, Hun-Seok Kim', George Varghese?, Nick McKeown?,
Martin lzzard!, Fernando Mujica', Mark Horowitz+
"Texas Instruments *Stanford University $Microsoft Research
pat.bosshart@gmail.com {grg, nickm, horowitz}@stanford.edu
varghese@microsoft.com {hkim, izzard, fmujica}@ti.com

ABSTRACT

In Software Defined Networking (SDN) the control plane
is physically separate from the forwarding plane. Control
software programs the forwarding plane (e.g., switches and
routers) using an open interface, such as OpenFlow. This
paper aims to overcomes two limitations in current switch-
ing chips and the OpenFlow protocol: i) current hardware
switches are quite rigid, allowing “Match-Action” processing
on only a fixed set of fields, and ii) the OpenFlow specifi-
cation only defines a limited repertoire of packet processing
actions. We propose the RMT (reconfigurable match ta-
bles) model, a new RISC-inspired pipelined architecture for
switching chips, and we identify the essential minimal set
of action primitives to specify how headers are processed in
hardware. RMT allows the forwarding plane to be changed
in the field without modifying hardware. As in OpenFlow,
the programmer can specify multiple match tables of arbi-
trary width and depth, subject only to an overall resource
limit, with each table configurable for matching on arbitrary
fields. However, RMT allows the programmer to modify all
header fields much more comprehensively than in OpenFlow.
Our paper describes the design of a 64 port by 10 Gb/s
switch chip implementing the RMT model. Our concrete
design demonstrates, contrary to concerns within the com-
munity, that flexible OpenFlow hardware switch implemen-
tations are feasible at almost no additional cost or power.

Categories and Subject Descriptors

1. INTRODUCTION

To improve 13 to change; to be perfect is to change
often. — Churchill

Good abstractions—such as virtual memory and time-
sharing—are paramount in computer systems because they
allow systems to deal with change and allow simplicity of
programming at the next higher layer. Networking has pro-
gressed because of key abstractions: TCP provides the ab-
straction of connected queues between endpoints, and IP
provides a simple datagram abstraction from an endpoint to
the network edge. However, routing and forwarding within
the network remain a confusing conglomerate of routing pro-
tocols (e.g., BGP, ICMP, MPLS) and forwarding behaviors
(e.g., routers, bridges, firewalls), and the control and for-
warding planes remain intertwined inside closed, vertically
integrated boxes.

Software-defined networking (SDN) took a key step in ab-
stracting network functions by separating the roles of the
control and forwarding planes via an open interface between
them (e.g., OpenFlow [27]). The control plane is lifted up
and out of the switch, placing it in external software. This
programmatic control of the forwarding plane allows net-
work owners to add new functionality to their network, while
replicating the behavior of existing protocols. OpenFlow has
become quite well-known as an interface between the con-
trol plane and the forwarding plane based on the approach
known as “Match-Action”. Roughly, a subset of packet bytes
are matched against a table; the matched entry specifies a

27

SDNChip [SIGCOMM 2013

Input Ch. 1
—

Input Ch. 684
—

Parse Graph Table Flow Graph Memory Allocation Legend
Uil PP I T 3\
(Ethernet) A A e Ak Tables
/ 7t YSI [[] (Ethertype}
END R AR \2 [[] sre Port, Src MAC)
v NALART N £ [Z] ost macy
v ARARRVIN s : {Dst IP}
IPv4 CIP rome) @CMAC §Wc§ E(Src!Dsth.
| \ ! IP Proto,
A oremet PTTL oot ouppon Wi
END i . ‘/' . (] irePy
[® rE
Table Flow Graph
J =+ Logical flow
Stage: 1 2 32 8;‘:0';'“ o oter
(a) L2/L3 switch.
queues
—————————— — — — — — —packet /| || —— i —— ———— —————
:_ Ingress processing g:imer /=1 s:i‘:::tr | Egress processing]
\ {enqueue) = 1 » dequeue)| | M Ch. 1
Match Match | | Match Match I
Stage Stage Ingress Stage Stage Egress .
l / | » .
ngress I 7 _.Deparser | _’:ﬂ]—’ Egress — B Deparser| | .
Parsers s | Parsers see
1 32 | 1 32 Output Ch. 64
|_ _______________ | packet Common data buffer packqt________________'
data data

Figure 3: Switch chip architecture.

28

