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Motivation

• multihoming and multipath transmission becoming an important 
capability of today’s networks

• improving availability, resilience and performance
• existing protocols such as MPTCP or SCTP usually rely on significant 

modifications in both the operating system’s networking stack as well as 
in the application layer

• it remains unanswered how and to what extent today's technologies may 
be used to achieve comparable results

Demand in mobile medical applications

• telemedicine becoming decisive part of modern health-care esp. in 
preclinical care (e.G. tele-consultation for EMS staff)

• not yet widely deployed due to deficient and constrained mobile 
connectivity

• need for enhanced, more resilient and failure-resistant mobile 
connectivity

Off-the-shelf mobile multipath setup
IDEA

• framework allowing mobile multihoming and multipath transmission 

based on today’s protocols and operating system features
 

PRO

• immediate deployability without a need for modifications in legacy 
applications and operating systems
 

CONTRA

• present-day protocols not designed for challenges coming with 
multipath-transmission such as out-of-order delivery and path-selection

Probing & Path Selection
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• use of Linux tun/tap drivers to create a logical network interface
• Linux IP Rules and iptables for application-specific routing
• user-space C++ application reads packets from tun-device, performs 

active probing and distributes encapsulated packets over multiple physical 
links and vice-versa

• gateway machine closer to the network core reads encapsulated  packets 
from tunnel, performs network-address translation and forwards packets 
to actual destination

• transparent transport of any packets through tunnel
• NAT traversal
• experiments using a Raspberry Pi as mobile gateway device connected to 

multiple wireless providers providing Internet connectivity over Ethernet

Application Architecture
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Figure 3: Measured and selected latencies and loss rates from wireless 3G experiment
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Figure 4:  Achieved constant throughput under frequent path-switching in testbed

• 3-way probes get sent out every ~Exp(1) seconds measuring path 
latency, simple moving average with window-size 5 determines best path 
for actual data transmission

• probes can piggy-back data packets reducing overhead
• periodic bandwidth measurements may be used to also optimize for 

bandwidth (so far only latency considered)
• different multipath modes (bandwidth aggregation or redundant 

multipath [Vulimiri et. al. HotNets 2012]) may be implemented

• based on very early measurements and experience, the proposed 
approach seems feasible

• although anticipated functionality was achieved, problems with TCP 
connections arise when switching between paths too frequently

• path-selection solely based on measured latency is reasonable as a first 
step but probably not sufficient for most applications

• future work: in-depth analysis of TCP throughput and problems due to 
packet-reordering, optimization for delay, loss or bandwidth, extended 
mobile experiments, video streaming tests

Figure 1: Packet flow and encapsulation

Figure 2: Basic Application architecture with data (blue) and probe (orange) traffic flow

Conclusion


