
Multihoming and Adaptive Multipath Transmission using
off-the-shelf Components in Preclinical Medical Care
Oliver Michel, David Stezenbach, Kurt Tutschku
University of Vienna

Motivation

• multihoming and multipath transmission becoming an important
capability of today’s networks

• improving availability, resilience and performance
• existing protocols such as MPTCP or SCTP usually rely on significant

modifications in both the operating system’s networking stack as well as
in the application layer

• it remains unanswered how and to what extent today's technologies may
be used to achieve comparable results

Demand in mobile medical applications

• telemedicine becoming decisive part of modern health-care esp. in
preclinical care (e.G. tele-consultation for EMS staff)

• not yet widely deployed due to deficient and constrained mobile
connectivity

• need for enhanced, more resilient and failure-resistant mobile
connectivity

Off-the-shelf mobile multipath setup
IDEA

• framework allowing mobile multihoming and multipath transmission

based on today’s protocols and operating system features

PRO

• immediate deployability without a need for modifications in legacy
applications and operating systems

CONTRA

• present-day protocols not designed for challenges coming with
multipath-transmission such as out-of-order delivery and path-selection

Probing & Path Selection

ASRTunnelClient ASRTunnelGateway NAT

CPi ➞ GPCT ➞ SCT ➞ S CT ➞ S GP➞ S

GP ➞ CPi S ➞ CTS ➞ CT S ➞ CT S ➞ GP

TunnelDevice
CT

Public Interface
S

• use of Linux tun/tap drivers to create a logical network interface
• Linux IP Rules and iptables for application-specific routing
• user-space C++ application reads packets from tun-device, performs

active probing and distributes encapsulated packets over multiple physical
links and vice-versa

• gateway machine closer to the network core reads encapsulated packets
from tunnel, performs network-address translation and forwards packets
to actual destination

• transparent transport of any packets through tunnel
• NAT traversal
• experiments using a Raspberry Pi as mobile gateway device connected to

multiple wireless providers providing Internet connectivity over Ethernet

Application Architecture

NAT

Public Interface
GP

DatagramSocket
GP

ASRTunnelGateway

TunnelDevice
GT

Public Interface
SP

Server
Application

ASRTunnelClient

PathSelector

SMAPath
Selector

TunnelDevice
CT

DatagramSocket
CPi

Client

Gateway

Server

Agent

PathSelector

SMAPath
Selector

AgentInternet

Internet

Client
ApplicationClient

ApplicationClient
Application

Routing
Routing

Routing

Routing
Routing

IP Rules

Routing
Routing

IP Tables

mobile client
with path-selection agent

ISP 1

ISP 2

ISP 3
hospital

e.g. 'tele-physician'

gateway

Figure 3: Measured and selected latencies and loss rates from wireless 3G experiment

T-Mobile Orange effective

packets lost 1.85% 20.47% 0.87%

Figure 4: Achieved constant throughput under frequent path-switching in testbed

• 3-way probes get sent out every ~Exp(1) seconds measuring path
latency, simple moving average with window-size 5 determines best path
for actual data transmission

• probes can piggy-back data packets reducing overhead
• periodic bandwidth measurements may be used to also optimize for

bandwidth (so far only latency considered)
• different multipath modes (bandwidth aggregation or redundant

multipath [Vulimiri et. al. HotNets 2012]) may be implemented

• based on very early measurements and experience, the proposed
approach seems feasible

• although anticipated functionality was achieved, problems with TCP
connections arise when switching between paths too frequently

• path-selection solely based on measured latency is reasonable as a first
step but probably not sufficient for most applications

• future work: in-depth analysis of TCP throughput and problems due to
packet-reordering, optimization for delay, loss or bandwidth, extended
mobile experiments, video streaming tests

Figure 1: Packet flow and encapsulation

Figure 2: Basic Application architecture with data (blue) and probe (orange) traffic flow

Conclusion

