Packet-Level Network Analytics
without Compromises

NANOG 73, June 26th 2018, Denver, CO

- . University of Colorado

Network monitoring is important

° SeCUth ISSUES e Analytics Platform

VvV oA W
|
|
| S~ Switch
|
| Telemetry
|

e Performance issues

 Equipment failure

* Misconfiguration

Network traffic and security threats grow rapidly

Global IP Traffic Forecast

200
150
100

50

Exabytes per
Month

2015 2016 2017 2018 2019 2020

Total Ransomware Samples

15
=
(p)]
D
o
5 10
Q0]
@)
2 5
@)
D
S
0

Q4 2015 Q12016 Q22016 Q32016 Q42016 Q12017 Q22017 Q32017

Traffic Is commonly encrypted

Fraction of encrypted HTTP traffic in Google Chrome
100

% encrypted

Jun 6 2015 Jun 4 2016 Jun 3 2017 Jun 2 2018

Network monitoring systems must match challenges

An ideal network monitoring system

record of every DC scale

full programmability

single packet performance

EXxisting systems make compromises

Filtering limits possible applications

Filtering
(e.g., only DNS)

ERERRNRRCN O

Packet Stream

Analytics

Sampling can easily miss important packets

ERRRREERCN O

Packet Stream

Sampling
(e.g., every 3rd)

Analytics

Aggregation limits information granularity
and thus applications

Aggregation Analytics

(e.g., counts per 5-tuple)
BERRRRRRREN O aad| 31412

Packet Stream

Fixed hardware pipelines hinder expressiveness

PFE filtter() groupby() zip()

TTITI11] 1

Packet Stream

S
o
1

Minimum downtime observed in 50
trials of reloading a Tofino PFE

Throughput (Gb/s)
N
o

o
1

0 20 40 60
Timestamp (Seconds)

Loss of information

Loss of capability

10

Why are these compromises made”

Case Study: Cisco Tetration for FB Data Center

Cisco Tetration-V:
* up to 200K flow events/s

* per instance requirements for Tetration-V ESXi: 128
CPU cores, 2TB RAM, 18TB storage

* 5 such servers for flow monitoring

Facebook web cluster (176 servers): 827K flows/s

11

[s it possible to perform network analytics on cloud-scale
infrastructures without compromises?

Two goals

Lossless telemetry

at high rates

Flexible processing

~ 3 Thit/s — 150M pps

per-packet information

x86 / general purpose
programming language

runtime configurability

~ 10M pps per core

Packet-Level Analytics without Compromises — Oliver Michel

jetstream

13

Lossless telemetry

at high rates

~ 3 Thit/s — 150M pps

per-packet information

Packet-Level Analytics without Compromises — Oliver Michel

e Record format

e Hardware-assisted record
generation

14

Grouped Packet Vectors (GPV)

e per-packet header fields
 meta data: e.qg., queue depth, ingress/egress timestamps

1.0239]134|122.4.249|1118.24.1.7||6| | 34323 | |22

Packet

1.7865| |12 122.4.24.9||118.24.1.7||6|134323| |22
Records

2.3239(145]122.4.24.9|1118.24.1.7||6| 34323 | |22

/ 1.0239, 1.7865, 2.3239

GPV 2242491182417 | |6| | 34323 | |22| —> |34, 12, 45

\ [SYN], [SYN,ACK], [FIN]

Flow
Records

1.0239(|1.1000| |3| | 91 | [22.4.24.9| |118.24.1.7| |6||34323| |22

Grouped Packet Vectors (GPV)

* GPVs provide high compression while maintaining
information richness

Compression of 1 hour CAIDA
Internet Packet Trace

e o
o O

N
@)

Trace Size [GB]
N
(@)

@)

Packet Records GPV Flow Records

16

Generating GPVs at line rate

« Problem: GPVs have variable length, space is constrained

e Custom 2-level

cache data structure

1. Tall cache with narrow slots (many short flows)
2. Small cache of wide slots (few long flows)

Untracked flow

_>_I_>

Tracked flow
- low activity

Tracked flow

- high activity
ﬁ

(Update
4,—»& Update);Q\l/ocate

Free
extension
== block
e 4 .

-~ | pointers
__ _| stack

¢ - -

-~ Extension blocks

. Allocated
Fixed slot extension
size cache) ock pointers
Initialize/ _|PUSH
_Replace Free
POP

Export prior
entry to

rocessor

Clear

Update)

17

Resource usage

0.30 7 4 Static, Hash
® Static, LRU

o 02571 = Dynamic, Hash
5 090 - + Dynamic, LRU
S
© 0.15 -
i

0.10

| | |
0.5 2.0 8.0 32.0
Cache Size (MB)

PFE memory vs. eviction rate

800 1 —— Packets —— GPVs
)
2 600 -
@
n
-
e A L
=
Q
D‘:" 200 H
(M0 AN At A0 2 e nt kit e el A o ine il aan) 2 Lo
0 -4+

| | |
0 1000 2000 3000
Time (Seconds)

GPV eviction vs. packet rate

18

e Scalability

* Optimizations for packet
record workloads

* Programming API

Flexible processing

x86 / general purpose
programming language

runtime configurability

~ 10M pps per core

jetstream

19

Leveraging parallel computation

source

parallel operators

I 52) APACHE
Spark -
Streaming STORM

Distributed + Resilient + Real-time

20

Jetstream architecture

iInput stage

v
v

‘ Backend

(e.g., time
‘ series DB)

aggregation
stage

processing
stages

21

Jetstream architecture

NUMA awareness

pipeline 1= CPU socket 1

Backend

\4

\

(e.g., time
series DB)

\4
\4

pipeline 2— CPU socket 2

22

Characteristics of packet record workloads

Can we use properties of packet analytics
workloads to our advantage”

* Network attached input
* Partitionabillity
 Small, simple, well-formed records

* Aggregation

Network attached input

Switch/PFE mmmdll 40G/100G NIC

~ 131 M pac:ket records/s

~ 41.9 Gbit/s
Barefoot Tofino PFE

queue

NIC DMA

NIC DMA

NIC DMA

jetstream
pipeline

jetstream
pipeline

jetstream
pipeline

24

Many small records

e Array vs. linked list
bool enqueue(const T& element_)

* Lock-free design

while (!qg.enqueue(e)) { }

 Wait-free design if (1g.enqueue(e))

std: :this_thread: :yield();

e /ero-copy operations

1
0.8
0.6

CDF

lock-based, array

0.4 lock-free, linked list

0.2 cameron314

.O lock-free, array
0 5 10 15 20 25

throughput [M records/s]

25

Programming abstraction

Application definition

source sink

‘ port | * @\/v port

ring buffer

int main(int argc, char** argv)

{
jetstream: :app app;

auto source = app.add_stage<source>(1l, “enpbs0f0d”);

auto sink = app.add_stage<sink>(1l, std::cout);
app . connect<jetstream: :pkt_t>(;)i

app();
return 0;

Ooco~NOYUTL DS~ WN B

-

Programming abstraction

Processor definition

class source : public jetstream::
[...]
s

explicit source(const std::string& iface_name_) : proc() {
add_out_port<jetstream: : >(0)

[...]
¥

jetstream: :signal operator()() override {
out_port<pkt_t>(0)->enqueue(read_from_nic(_pkt),
jetstream: :signal::
return jetstream::signal:: X

27

Performance

throughput [M packets/s]

packets per source ==
passthrqugh —8—

replication factor (r)

28

Evaluation

~88 Gb/s — 91M p/s

jetstream
32 cores

~352 Gb/s

Facebook cluster study N

o 2.9M packets/core: 32/64
cores for 4/8 racks

e StreamBox: 5096/10192
cores (163x)

e Single server: 1/176 2 0.5%
of cluster

IIIIIIIIIIIIIIIIIIIIIIE

T

i

i

[Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. 2015. Inside the Social
Network's (Datacenter) Network. SIGCOMM Comput. Commun. Rev. 45, 4 (August 2015), 123-137]

Packet-Level Analytics without Compromises — Oliver Michel 29

Conclusion

_high-performance, hardware-

*flow

accelerated network telemetry system

jetstream

_ high-pertormance, software
network analytics platform

30

Conclusion

John Sonchack, Oliver Michel, Adam J. Aviv,

Eric Keller, Jonathan M. Smith Oliver Michel, John Sonchack, Eric Keller,

Jonathan M. Smith

Scaling Hardware Accelerated Monitoring
to Concurrent and Dynamic Queries with
*Flow

Packet-Level Analytics in Software
without Compromises

To appear: USENIX ATC 2018 To appear: USENIX HotCloud 2018

Scaling Hardware Accelerated Monitoring to Concurrent and Dynamic Packet-Level Analytics in Software without Compromises

Queries With *Flow

John Sonchack*, Oliver Michel®, Adam J. Aviv¥, Eric Keller', and Jonathan M. Smith*

*University of Pennsylvania, *United States Naval Academy, and %University of Colorado, Boulder

Abstract

We introduce *F1ow, a practical system for hardware
accelerated traffic monitoring. *Flow is highly scal-
able and able to execute many concurrent and dynami-
cally changing traffic queries with minimal network dis-
ruption. The design insight is to move query specific
computation off of the switch ASIC and into software
running on commodity servers. We evaluated *Flow on
a 3.2 Tb/s Barefoot Tofino switch on-which we devel-
oped a novel dynamic cache data structure to build and
export to software flow records that contain per-packet
information in a compact, disaggregated format that en-
ables highly efficient software processing. We demon-
strate *Flow’s capability to efficiently support multiple
concurrent queries at scale through a Raftlib stream pro-

and network resources required for the monitoring in-
frastructure [39]. There are two other important require-
ments that the compiled query model does not address:
concurrency and dynamic queries.

First, support for concurrent traffic queries. In most
networks, there are often multiple applications or opera-
tors observing the network concurrently but with differ-
ent queries. A practical monitoring infrastructure needs
to multiplex the PFE across all the concurrently active
queries. This is a challenge when the entire query is
compiled to the PFE. Each query requires different com-
putation that, given the line-rate processing model of
a PFE [49], must map to dedicated computational re-
sources, which are limited in PFEs.

Equally important for practical deployment is support

.

Oliver Michel
University of Colorado Boulder

Eric Keller
University of Colorado Boulder

Abstract

Traditionally, network monitoring and analytics systems
rely on aggregation (e.g., flow records) or sampling to
cope with high packet rates. This has the downside that,
in doing so, we lose data granularity and accuracy, and in
general limit the possible network analytics we can per-
form. Recent proposals leveraging software-defined net-
working or programmable hardware provide more fine-
grained, per-packet monitoring but still are based on the
fundamental principle of data reduction in the network,
before analytics. In this paper, we provide a first step
towards a cloud-scale, packet-level monitoring and ana-
lytics system based on stream processing entirely in soft-
ware. Software provides virtually unlimited programma-
bility and makes modern (e.g., machine-learning) net-

John Sonchack
University of Pennsylvania

Jonathan M. Smith
University of Pennsylvania

just couldn’t process the information fast enough. These
approaches, of course, reduce information — aggregation
reduces the load of the analytics system at the cost of
granularity, as per-packet data is reduced to groups of
packets in the form of sums or counts [3, 16]. Sampling
and filtering reduces the number of packets or flows to be
analyzed. Reducing information reduces load, but it also
increases the chance of missing critical information, and
restricts the set of possible applications [30, 28].

Recent advances in software-defined networking
(SDN) and more programmable hardware have provided
opportunities for more fine-grained monitoring, towards
packet-level network analytics. Packet-level analytics
systems provide the benefit of complete insight into the
network and open up opportunities for applications that

ramiire ner-nacket data in the netwark 1271 Rnt ~camo

Q&A /

DISCUSSION

Oliver Michel

oliver.michel@colorado.edu
http://nsr.colorado.edu/oliver

University of Colorado Boulder

BACKUP SLIDES

'Network Latency Monitoring

1400
's0 Throughput 0 1500 L CM56 (1sec) =il
SFick BS S CM56 (500ms) welhess
’g ink T Storm € 1000 CMI2 (1sec)
CM12 (500
$ = 100 5 800 T (200ms),
%5 £ 600 [\
0% |, R S~
£ £ 200 f g
.u% I 0 y v i]
0 = - - 4 12 32 56
40 80 120 # Cores

CPU Cores

[Apache Flink] [StreamBox Miao ‘18]

Packet-Level Analytics without Compromises — Oliver Michel

Stream Processing

Packet

Packet

TCP
Packet

'

@

TCP

Packet
- @
Filter
only TCP

Parallelize\A
group by IP Destination >

>‘

v
'--->

Bin Filter Alert

by time (e.g,, 10sec) > n Bytes per 10 sec

35

Reducing copy operations

Packet Buffer

, . Pointer
) v Passing -
/ C
queue<pkt*> queue<pkt*>

36

Reducing copy operations

1 packet p;

2 .1p_proto = 6;
3 .enqueue(p);

pointer directly

ointer

INtO qUEUE Passing

CFo—C

queue<pkt>

1 auto p = g.enqueue();

2 p->1p_proto = 6;

37

Technologies

* Programmable switches and PISA: Protocol Independent Switch

Architecture
* Reconfigurable match-action tables in hardware

 multiple stages with TCAM/ALU pair, fixed processing time,

guarantees line rate

Logical Data-plane View
(your P4 program)

Switch Pipeline

Queues

L2 Action Macro

v4 Action Macro

v6 Action Macro
ACL Table

Programmable
Parser

Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN

Pat Bosshartt, Glen Gibb!, Hun-Seok Kim', George Varghese?, Nick McKeown?,
Martin Izzard', Fernando Mujica', Mark Horowitz:

Texas Instruments *Stanford University ‘Microsoft Research
pat.bosshart@gmail.com {grg, nickm, horowitz}@stanford.edu
varghese@microsoft.com {hkim, izzard, fmujica}@ti.com

ABSTRACT

P4 is a high-level language for programming protocol-inde-

ABSTRACT 1. INTRODUCTION

In Software Defined Networking (SDN) the control plane
is physically separate from the forwarding plane. Control
software programs the forwarding plane (e.g., switches and
routers) using an open interface, such as OpenFlow. This
paper aims to overcomes two limitations in current switch-
ing chips and the OpenFlow protocol: i) current hardware

To improve is to change; to be perfect is to change
often. Churchill

Good abstractions—such as virtual memory and time-
sharing—are paramount in computer systems because they
allow systems to deal with change and allow simplicity of

switches are quite rigid, allowing “Match-Actio

. ;s "

at the next higher layer. Networking has pro-
N . 2 pillphiaibtn el by

progr
B N

pendent packet processors. P4 works in conjunction with
SDN control protocols like OpenFlow. In its current form,
OpenFlow explicitly specifies protocol headers on which it
operates. This set has grown from 12 to 41 fields in a few
years, increasing the complexity of the specification while
<till not providineg the flexibility to add new headers. In this

P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart’, Dan Daly", Glen Gibb’, Martin Izzard’, Nick McKeown?, Jennifer Rexford™,
Cole Schlesinger™, Dan Talayco®, Amin Vahdat®, George Varghese®, David Walker™
“Barefoot Networks “Intel *Stanford University ~Princeton University “Google ‘Microsoft Research

multiple stages of rule tables, to allow switches to expose
more of their capabilities to the controller.

The proliferation of new header fields shows no signs of
stopping. For example, data-center network operators in-
creasingly want to apply new forms of packet encapsula-
tion {(e.g.. NVGRE, VXLAN, and STT), for which they re-
sort to deploying software switches that are easier to extend
with new functionality. Rather than repeatedly extending

38

