MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY

+ USING THE GENI MESOSCALE TESTBED FOR NETWORK EXPERIMENTS

Invited Talk - University of Colorado at Boulder April 8th, 2013.

Ashish Vulimiri University of Illinois at Urbana-Champaign

P. Brighten Godfrey University of Illinois at Urbana-Champaign Oliver Michel University of Vienna

Scott Shenker University of California at Berkeley

Online services

	Delay	Result
Amazon	+100ms	-1% revenue
Bing	+500ms	-1.2% revenue
Google	+400ms	-0.6% searches

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

2

Z

T

S15 :0: 1

HCl studies

[3] L. Pantel, L.C. Wolf, "On the impact of delay on real-time multiplayer games", NOSSDAV '02

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

3

0

S

I. Pervasive uncertainty

- I. Pervasive uncertainty
 - Link congestion

- I. Pervasive uncertainty
 - Link congestion
 - Cache miss

- I. Pervasive uncertainty
 - Link congestion
 - Cache miss
 - Slow disk lookup

- I. Pervasive uncertainty
 - Link congestion
 - Cache miss
 - Slow disk lookup
 - Delay due to virtualization

2. Application structure

Oliver Michel, University of Vienna, April 2013

Throughput

Latency

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

6

6

- Make the Internet faster by converting extra bandwidth into reduced latency
- Send out multiple copies of a packet
- Use only the packet arriving first

- Past uses
 - Distributed jobs (speculative execution) ^[5]
 - DTNs [6]
 - DHT queries ^[7]

[5] Ananthanarayanan et al., "Why let resources idle? Aggressive cloning of jobs using Dolly", HotCloud '12

[6] Soljanin, "Reducing delay with coding in multi-agent information transfer", Allerton '10[7] Li et al., "Bandwidth efficient management of DHT routing tables", NSDI '10

- I. Overhead should be tolerable
- 2. When is cost < benefit?
- 3. Example applications

Intuitively overhead should be low because

- I. Latency-sensitive tasks likely to be small
- 2. Heavy tails are pervasive

Overhead

What is the overhead from replicating the x% smallest flows?

Redundancy is only useful if

cost <

benefit

Redundancy is only useful if

S

Redundancy is only useful if

12

Redundancy is only useful if

Redundancy is only useful if

Redundancy is only useful if

- Hard to estimate
- Approximation
 - U.S. median wage = 23.5\$/h

4

Redundancy is even useful with the most expensive cell phone plan:

Redundancy is even useful with the most expensive cell phone plan:

Redundancy is even useful with the most expensive cell phone plan:

Redundancy is even useful with the most expensive cell phone plan if

Redundancy is even useful with the most expensive cell phone plan if

Redundancy is useful with a DSL plan if

latency savings

Experiments

- I. DNS
- 2. Multipath overlay

Experiments

- I. DNS
- 2. Multipath overlay

Targets 10ms/KB (cell) 0.3ms/KB (DSL)

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

S15 :0:

- Replicate DNS queries to multiple servers in parallel
- Evaluation: PlanetLab experiments

- Replicate DNS queries to multiple servers in parallel
- Evaluation: PlanetLab experiments

G

- Replicate DNS queries to multiple servers in parallel
- Evaluation: PlanetLab experiments

	avg. response time (s)
Local DNS	0,27
Level3	0,61
Google	0,16
OpenDNS	0,37

- Replicate DNS queries to multiple servers in parallel
- Evaluation: PlanetLab experiments

	avg. response time (s)
Google	0,16
Local DNS	0,27
OpenDNS	0,37
Level3	0,61

Try different levels of replication, using servers in the ranked order

Experiments

	Optimal number of servers per query	Average latency improvement
Cell phone	5	90ms
DSL	10	looms

Multipath Overlay

• Send copies of packets on different overlay paths

- Data rate: 32kbps-56kbps
- Topology, data rate both match Skype

Multipath Overlay

Oliver Michel, University of Vienna, April 2013

	2 paths	3 paths
Mean latency savings (ms/KB)	0,8	0,4
99.9th %ile latency savings (ms/KB)	260	130

23

Z

T

15 %

	2 paths	3 paths
Mean latency savings (ms/KB)	0,8	0,4
99.9th %ile latency savings (ms/KB)	260	130

Targets 10ms/KB (cell) 0.3ms/KB (DSL)

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

23

 Experiments on both the GENI Mesoscale/OpenFlow and the PlanetLab and ProtoGENI testbeds

[8] cp. Riga et.al. Introduction to GENI, tutorial NSDI 2013, Lombard, IL

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

25

15:0

- Science issues
 - cannot currently understand or predict the behavior of complex, largescale networks

[8] cp. Riga et.al. Introduction to GENI, tutorial NSDI 2013, Lombard, IL

- Science issues
 - cannot currently understand or predict the behavior of complex, largescale networks
- Innovation issues
 - substantial barriers to at-scale experimentation with new architectures, services and technologies

[8] cp. Riga et.al. Introduction to GENI, tutorial NSDI 2013, Lombard, IL

- Science issues
 - cannot currently understand or predict the behavior of complex, largescale networks
- Innovation issues
 - substantial barriers to at-scale experimentation with new architectures, services and technologies
- Society issues
 - increasingly rely on the Internet but are unsure we can trust its security, privacy or resilience

[8] cp. Riga et.al. Introduction to GENI, tutorial NSDI 2013, Lombard, IL

- Science issues
 - cannot currently understand or predict the behavior of complex, largescale networks
- Innovation issues
 - substantial barriers to at-scale experimentation with new architectures, services and technologies
- Society issues
 - increasingly rely on the Internet but are unsure we can trust its security, privacy or resilience

relatively little innovation in the core of the network

[8] cp. Riga et.al. Introduction to GENI, tutorial NSDI 2013, Lombard, IL

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

26

- GENI is a nationwide suite of infrastructure for "at scale" experiments in networking, distributed systems, security, and novel applications
 - Federation of existing testbeds including Emulab, ProtoGENI, PlanetLab accessible via a common API

- GENI is a nationwide suite of infrastructure for "at scale" experiments in networking, distributed systems, security, and novel applications
 - Federation of existing testbeds including Emulab, ProtoGENI, PlanetLab accessible via a common API
- GENI opens up huge new opportunities
 - Leading-edge research in next-generation networks
 - Rapid innovation in novel, large-scale applications

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

27

- Key GENI concept: slices & deep programmability
 - Openflow: FlowVisor
 - Network:VLANs
 - Hosts: different types of virtualisation or exclusive resource

- Key GENI concept: slices & deep programmability
 - Openflow: FlowVisor
 - Network:VLANs
 - Hosts: different types of virtualisation or exclusive resource
- Efforts for connecting overseas (e.G. GLab, Deutsche Telekom)

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

28

- Two types of wide-area setups possible
 - Overlay: connect host resources through L3 via Internet
 - Mesoscale:
 - L2 data plane, L3 control plane
 - Internet2, NLR physical fiber
 - programmable OpenFlow switches at campuses and I2/ NRL POPs
 - wide-area L2 broadcast-domain with hosts directly connected to OF switches

• Experiments at UIUC

Overlay Vulimiri et. al. More is Less - Reducing Latency via Redundancy. HotNets-XI, Redmond, WA

Mesoscale Michel et. al. Adaptive Source Routing. GECI3, Los Angeles, CA

Bandwidth Redundancy Latency

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

31

Argument for trading bandwidth for reduced latency in certain scenarios

Argument for trading bandwidth for reduced latency in certain scenarios

• cost-benefit analysis

31

- Argument for trading bandwidth for reduced latency in certain scenarios
- cost-benefit analysis
- DNS, wide-area multipath overlay experiments

- Argument for trading bandwidth for reduced latency in certain scenarios
- cost-benefit analysis
- DNS, wide-area multipath overlay experiments
- Overview over used resources within the GENI federation

Vulimiri, A., Michel, O., Godfrey, P. B., Shenker, S. "More is Less - Reducing Latency via Redundancy" I Ith ACM Workshop on Hot Topics in Networks (HotNets-XI) October 2012, Redmond, WA

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

32

[1] Vulimiri, A., Michel, O. Godfrey, P. B., Shenker, S. More is Less - Reducing Latency via Redundancy. HotNets '12, Redmond, WA

[2] Michel, O., Vulimiri, A., Godfrey, P. B. Adaptive Source Routing. GEC13, Los Angeles, CA.

[3] Partition/Aggregate Pattern - Alizadeh et.al.. "Data CenterTCP", SIGCOMM '10

[4] L. Pantel, L.C. Wolf, "On the impact of delay on real-time multiplayer games", NOSSDAV '02

[5] Ananthanarayanan et al., "Why let resources idle? Aggressive cloning of jobs using Dolly", HotCloud '12

[6] Soljanin, 'Reducing delay with coding in multi-agent information transfer'', Allerton '10

[7] Li et al., "Bandwidth efficient management of DHT routing tables", NSDI '10

[8] Riga et.al. Introduction to GENI, tutorial NSDI 2013, Lombard, IL

Thanks

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

34

Backup slides

MORE IS LESS - REDUCING LATENCY VIA REDUNDANCY + GENI MESOSCALE EXPERIMENTATION Oliver Michel, University of Vienna, April 2013

15 % 0

.2.

How can you mitigate overhead?

- Strict prioritization
- Redundancy elimination^[*]
- Network coding (fractional replication)

[*] Han et al., ''RPT: re-architecting loss protection for content-aware networks'', NSDI '12

