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Abstract—Network virtualization is an extensively used
approach to allow multiple tenants with different network
architectures and services to coexist on a shared data center
infrastructure. Core to its realization is the mapping (or
embedding) of virtual networks onto the underlying sub-
strate infrastructure. Existing approaches are not suitable
for cloud environments as they lack its most fundamental
requirement: elasticity. To address this issue, we introduce
two new network primitives – expand and contract – which
allow virtual networks to scale up and down. Mapping
and scaling virtual networks over time, however, introduces
fragmentation in the substrate network. This is akin to
fragmentation in a file system where files are not laid out
in contiguous physical blocks of the storage device. This
problem impacts network performance and reliability for
tenants and their applications. Instead of further improv-
ing embedding algorithms to tackle this problem, in this
work, we present a yet unexplored approach: leveraging
network migration techniques to defragment the network. We
introduce network defragmentation as a new management
primitive and propose algorithms to materialize it. We show
through extensive simulations that our techniques signifi-
cantly improve network performance while maintaining high
utilization of the infrastructure, thus increasing provider
revenue. On average, using defragmentation leads to 20%
reduction in path length and utilization and cuts the number
of very long paths (longer than half of the network diameter)
between 52% and 62%. Moreover, it doubles the number of
servers utilized by 50% or less as a result of consolidation.

I. INTRODUCTION

Network virtualization is a widely used technique that
enables a more dynamic infrastructure in the context
of data center networks. Being a cornerstone of cloud
computing, virtual networks (VN) should ideally provide
an abstraction that makes tenant infrastructure more elastic
by allowing them to scale up and down their networks
depending on demand, by adding, removing, expanding, or
contracting their virtual networks dynamically. To achieve
this, it is necessary to map the virtual network requests
onto the substrate infrastructure, a problem commonly
known as Virtual Network Embedding (VNE).

The literature on this topic is rich [12], but most existing
approaches are not suitable for a cloud environment as
they do not fit the model of dynamic scaling, limiting the
introduction of modern networking services [18] in the
cloud. To address this issue, we introduce two network
primitives to VNE – expand and contract – providing the
necessary elasticity to this environment.

Performing the mapping and scaling operations fre-
quently tends to introduce fragmentation in the underlying
substrate. This is analogous to fragmentation in a file
system where files are not laid out in contiguous phys-
ical blocks of the storage device. When allowing virtual

networks to scale up or down (expand and contract) over
time, we observe that the resource fragmentation effect
becomes even more substantial.

When the physical network is fragmented, path lengths
in the virtual networks increase as resources belonging
to the same virtual network are mapped across distant
regions of the data center. As a result, communication
between adjacent nodes (in the virtual topology) needs
to traverse additional switches, greatly increasing latency
and bandwidth variability between virtual machines, and
thus impacting job completion times and overall appli-
cation performance [25]. In addition, physical resources
increasingly become unusable with a decline of the virtual
network acceptance rate, leading to a decrease in revenue
for the infrastructure provider (InP), even though the
physical network technically still has sufficient capacity
to accommodate a request.

Instead of further optimizing VNE to address the
fragmentation problem, we propose a different approach:
leveraging network migration techniques to remap the sub-
strate network with the goal of both improving substrate
utilization and boosting network performance.

Virtual machine migration approaches have been pro-
posed to optimize and consolidate machine placement,
reducing fragmentation at the hypervisor-level, but these
solutions generally do not take the network that intercon-
nects the virtual machines into account. This is particu-
larly relevant in the context of data center networks that
are increasingly programmable, with Software Defined
Networking (SDN) based control and reconfigurable data
planes. In these modern data centers, a tenant can run
their own network applications on virtual network devices
connected through links with reserved, guaranteed prop-
erties. This motivates us to specifically target the domain
of virtualized data center networks with abstractions for
compute nodes (VMs), as well as networking infrastruc-
ture (programmable switches and links).

Toward the goal of mitigating the effects of resource
fragmentation, we propose network defragmentation as a
new network management primitive. The idea is to explic-
itly remap virtual networks when fragmentation reaches
a certain threshold, in order to optimize network per-
formance and resource usage, effectively de-fragmenting
the network. This concept is depicted in Figure 1. To
implement this primitive, we envision using modern virtual
machine and network migration techniques, such as LIME
[15], which are able to migrate entire virtual networks
including virtual machines, routers, and links, with negli-
gible downtime.



(a) before scaling (b) fragmented network (c) after defragmentation
Fig. 1: The network became fragmented after adding an additional node to the red network, after the blue network
was embedded, resulting in an increased path length that is corrected using defragmentation.
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Fig. 2: System Architecture

Figure 2 illustrates the entire system, with the current
state of network virtualization shown in white, our new
extensions shown in green, and future work beyond the
scope of this paper shown in blue. In this, a cloud API
allows users to make requests which are then embed-
ded, resulting in a mapping of the virtual networks. A
monitor observes key metrics to decide when to trigger
a defragmentation. Defragmentation planning would then
decide which networks to migrate and where, resulting
in a target mapping. The final step is to actually run
the defragmentation, where the migration steps to get the
network to this state must be planned and carried out.

To summarize, we make the following contributions:
1) We elaborate on new requirements for virtual network
embedding in the cloud (namely, dynamic scaling of
networks) and provide a solution that allows for expansion
and contraction of virtual networks, matching the way
cloud infrastructure is used in practice (Section III).
2) We identify challenges associated with scaling of vir-
tual networks in the cloud and elaborate on metrics to
quantify the resource fragmentation problem (Section IV).
3) We propose a new network management primitive –
network defragmentation – and a set of defragmenta-
tion heuristics to materialize it, which we demonstrate
to improve both network resource usage and network
performance (Section V).
4) We evaluate our approach using extensive discrete
event simulations and make our cloud simulation frame-
work publicly available as open-source software1. We
show that defragmentation on average leads to 20% re-
duction in path length and utilization, cuts the number
of very long paths (longer than half of the network
diameter) between 52% and 62%, and more than doubles
the numbers of servers utilized by 50% or less through
resource utilization consolidation.

II. RELATED WORK

In this paper we propose network defragmentation as
a means of overcoming the challenges that arise in both
tenant network performance and provider efficiency due
to the dynamic behavior of modern cloud infrastructures.
While there has been a great deal of research in virtual
network embedding toward parts of this objective, our

1available at: https://github.com/olivermichel/dcdefrag

work is the only to address a comprehensive solution,
as summarized in Table I. We now summarize the most
related work subdivided by the two main goals – suitability
for cloud environments and network defragmentation.

A. Suitability for Cloud Environments

Cloud infrastructures have unique properties which
make them a unique challenge for virtual network em-
bedding. Here, we outline these key characteristics and
their implications.

1) Substrate Topologies: For reasons of scalability,
failure resiliency and to provide predictable bisection
bandwidth, data center network topologies usually have
the form of a multi-rooted tree (e.g., fat tree, leaf-spine) or
some sort of cube (e.g., BCube). The majority of work in
the area of virtual network embedding though is designed
for and evaluated with mesh-like physical topologies,
which are commonly found in wide-area networks [5], [6],
[11], [14], [29]. While they may be able to handle topolo-
gies more commonly found in data centers, our evaluation
with [6], a poweful VNE algorithm, showed that when
using tree-like topologies the algorithm’s performance (in
terms of acceptance ratio) suffers greatly.

2) Virtual Topologies: Different cloud applications, like
analytics frameworks or web application infrastructures,
typically require different network topologies, such as
multiple groups of VMs interconnected to each other via
a central switch or a tiered layer 3 network layout. In
addition, specific links in such a topology must provide
certain QoS guarantees. Most existing solutions fall short
in terms of flexibility for tenants by limiting the possible
virtual network topologies [18]. For instance, [3], [13],
[23], and [16] all only provide a limited set of topologies.
This simplification allows them to use specialized (often
bin-packing based) VNE approaches as opposed to provid-
ing a generalized VNE scheme. In some, e.g., [16], it is not
possible to define virtual topologies at all. Instead, all VMs
are all part of a single broadcast domain which is logically
equivalent to a star topology with a single virtual switch.
[26] and [11] support generalized topologies, but are
evaluated on random substrate networks, which simplifies
the embedding as a random graph is mapped on a random
graph. [28] and [22] are exceptions as they both work
with arbitrary topologies and evaluate these on data center
substrate topologies.

3) Network Control: Controlling the network means
being able to specify custom forwarding logic, middlebox
functionality, and traffic engineering. With more com-
plicated workloads, control and QoS guarantees in the
network will lead to better performance. With full SDN
virtualization approaches available [8], [24], this capability
is possible, and we believe cloud providers will eventually
provide greater network control (a trend that has already



TABLE I: Overview of Related Work

Suitability for Cloud Environments Network Defragmentation
DC Substrate

Topo.
Virtual
Topo.

Network
Control

VN
Scaling

Use
Migration

Frag.
Metrics

Defragmenta-
tion

SecondNet [16] yes limited no yes yes no partially
VNE Evolving Net. [9] no arbitrary no no yes no no
Reliable Virtual Infras. [26] no arbitrary no no no no no
VNR Algorithm [11] no arbitrary unclear no yes yes yes
Oktopus [3] yes limited yes no no no no
VDC Embedding [22] yes arbitrary yes no no no no
VDC Planner [28] yes arbitrary yes yes yes no partially
Beyond the Stars [23] yes limited partially no no no no
Kraken [13] yes limited partially yes yes no no
DCDefrag (this work) yes arbitrary yes yes yes yes yes

started with offerings like Elastic Load Balancing [2]).
In order to support network control, the VNE algorithm
must at least differentiate between different node types
(i.e., servers and switches). Many solutions however, only
support a single logical virtual switch that is actually
implemented through direct point to point tunnels between
all VMs that need to communicate (e.g., in [16]). [23]
even removes the logical virtual switch as an optimization
mechanism, and also directly connects all communication
partners, which requires prior knowledge of the traffic
matrix. With the majority of other work (e.g., [13], [26],
[28]) it is unclear how virtual switches can be connected
to VMs, and whether the model actually supports network
programmability or just basic layer 2 switching within a
single broadcast domain.

4) VN Scaling: One of the main benefits of a virtualized
compute and networking infrastructure (especially in a
public cloud setting) is the ability to quickly and easily
request resources as they become needed. This is opposed
to buying hardware upfront and over-provisioning the data
center in order to handle sudden increases in traffic, or
even expected short-term changes in demand. As such,
the network topology needs to dynamically adapt to the
changing application needs. Most VNE work ignores the
requirement to dynamically scale existing (already embed-
ded) virtual networks. Exceptions to this are [16], [28],
and [13]. While [9] targets evolving networks, the paper
deals with evolving substrate networks and thus solves a
different problem.

B. Network Defragmentation
Our solution is unique in that it not only solves a

problem specifically suitable for cloud infrastructures, but
it also addresses the fragmentation problem. We outline
the required characteristics required towards this goal.

1) Use of Migration: Machine and network migration
techniques, such as LIME [15] are able to migrate entire
virtual networks including virtual machines, routers, and
links, with negligible downtime. This technology can be
tremendously useful for data center virtualization solutions
as entire virtual networks can be moved and consolidated
either during the VNE process (i.e., to increase the chances
of a successful embedding) or as part of an optimization
mechanism to defragment the network as proposed in
this paper. [13] uses virtual machine migration during the
embedding process to improve the VN acceptance rate.
[16] leverages migration to consolidate machine placement
but uses a different network model. The closest solution
in this aspect is [28], which periodically uses migration to
optimize the network.

2) Fragmentation Metrics: Through simulations, we
learned that performing mapping and scaling operations
frequently tends to introduce fragmentation in the under-
lying substrate network (cf. Section IV). When allowing
virtual networks to scale up and down (expand and con-
tract) over time, we observe that the resource fragmen-
tation effect becomes even more substantial. We define
metrics for the physical network fragmentation problem
and show that defragmentation can successfully optimize
the network. The only related work that defines metrics for
the network fragmentation problem and discusses causes
for fragmentation is [11].

3) Defragmentation: While some VNE algorithms are
able to limit the degree of fragmentation in the network
when embedding a new network through load balancing
mechanisms (e.g., [22] and [6]), the problem becomes
intractable when allowing networks to grow and shrink, as
the embedding problem is significantly more constrained.
Moreover, it is difficult to optimize for a global met-
ric (fragmentation) in an online fashion without having
knowledge about future requests. This is why we believe
that a dedicated network defragmentation algorithm is
a better approach toward reducing fragmentation in the
network, improving tenant performance, as well as InP
revenue. Network Defragmentation should be a network
management primitive and, therefore, a requirement for
cloud virtualization solutions. Most related to the network
defragmentation primitive we introduce is the work that
leverages VM migration to optimize data centers [10],
[19]. Regarding leveraging network migration, Yu et.al.
proposed path migration (re-mapping virtual links) to
enable future virtual network embeddings to succeed [27].
[16] and [11] propose network optimization algorithms
toward our above stated goals, but use entirely different
network models which highly simplify the fragmentation
problem. [28] periodically reruns the bin-packing based
VNE algorithm to consolidate network resources in order
to improve VN acceptance rates in the future. There is no
study or quantification of fragmentation except for accep-
tance ratio, which makes it hard to evaluate the efficacy of
the approach. Also, tenant network performance remains
unaddressed. We go further and introduce a network-
wide primitive for leveraging virtual network migration
capabilities to optimize data centers for utilization and
performance.

In summary, all related work only addresses a subset of
the above described requirements and characteristics. To
the best of our knowledge, our study and approach is the
first toward a comprehensive cloud virtualization solution



that addresses the unique requirements in the cloud, as
well as the consequences of prolonged cloud operation
(i.e., substrate fragmentation), and proposes a solution to
this problem.

III. DYNAMIC VN EMBEDDING FOR DATA CENTERS

Given the shortcomings of existing VNE work to ad-
dress the needs of modern data centers, here we present
a new virtual network embedding solution for highly
dynamic infrastructures. First, we define the general VNE
problem. Then, we detail our network model which fo-
cuses on physical and virtual topologies of modern cloud
systems. For this setting, we provide an extended problem
definition. Second, we detail a recent VNE algorithm
which we leveraged as it is best suited for these topologies.
Third, we introduce two VNE primitives, expand and
contract, along with their associated algorithms, which
allow networks to match the dynamic behavior of cloud
systems. Finally, we describe our implementation of these
algorithms within a cloud simulator, which emulates cloud
workloads using these new primitives.

A. VNE Problem Definition

The Virtual Network Embedding Problem can be for-
mally defined as follows: Let S = (VS , ES) be a substrate
network consisting of substrate nodes VS and substrate
links (edges) ES , and let Ri = (VRi , ERi) be the ith
request for a new virtual network consisting of nodes
VRi

and links ERi
. Each substrate resource has scalar

capacity c(s) for resource s ∈ S. Each virtual resource has
scalar demand d(r) for resource r ∈ R. Upon mapping
resource r onto resource s, d(r) is subtracted from the
residual capacity ∆(s) of s. ∆ of resource s at a given
time is thus defined as ∆(s) = c(s) −

∑
∀v→s d(v),

where v → s denotes that v has been mapped onto s.
A virtual network embedding algorithm is defined by a
function f that maps each v ∈ VR and each e ∈ ER

onto one and only one v ∈ VS and e ∈ ES , respectively:
f : v → s, s.t. ∆(s) ≥ d(v) ≥ 0. f allows multiple virtual
resources to be mapped on a single physical resource and
can be defined differently for different resource types. It
is important to note that node and link mapping must be
carried out in a coordinated fashion in order to keep the
exact original (virtual) topology.

B. Network Model

For the following discussion (and simulations), we
assume that tenants want to exactly specify the network
topology, and reserve resources on servers as well as
on networking devices (switches or routers), which are
then interconnected through reserved links with guaranteed
bandwidth. For the physical network we adopt the model
of Rabbani et.al. [21], which currently does not account
for soft-switches on the hypervisor, instead every virtual
switch is mapped onto a physical switch. That also means
that every virtual link is mapped onto a physical link, even
when two VMs which are connected to each other are
located on the same physical server.

While our simulator and modified embedding scheme
can handle arbitrary virtual and physical network topolo-
gies, for the experiments in this paper and our following

evaluation, we leveraged a specific physical topology, as
well as a mix of three different topologies for virtual
networks.

1) Physical Network: Traditionally, data centers lever-
aged a core/aggregation/access layer network using the
spanning tree protocol (STP) to disable redundant links
avoiding forwarding loops. More recently, however, the
leaf-spine network architecture has emerged and is becom-
ing more popular than traditional data center topologies
[4]. In such a network a set of spine switches is connected
in a full mesh to a set of leaf switches which then connect
to the individual servers.

2) Virtual Networks: For the virtual networks, while
supporting arbitrary topologies, for our simulations we use
three different topologies: The first two, Virtual Cluster
(VC) and Virtual Oversubscribed Cluster (VOC) are taken
from [3]. A VC is defined by a single switch that connects
to N VMs in a star-topology with link bandwidth B. The
VMs and the switch all have the same demand C. A
virtual oversubscribed cluster consists of multiple virtual
clusters that are connected to a central switch over links
that are oversubscribed (in terms of bandwidth availability)
by factor O. In this topology, N VM’s in M groups of
size S are connected to their group switch with bandwidth
B. The group switches are connected to the main switch
with bandwidth B × S/O. The third topology is a three-
tier topology commonly used in web workloads, where
a layer of α load balancers is connected to a layer of β
application servers which are then connected to γ database
servers [7]. Again, the servers and the two switches have
demand C and all links have bandwidth demand B.

C. Extended Problem Definition for Cloud Environments

With SDN and network programmability in mind, we
do not only consider reserving virtual machines and links
between them (as an overlay), but also reserving resources
on programmable switches (e.g., match-action rules) and
virtual links forming a topology. We denote the set of
physical switches as XS and the set of virtual switches for
request i as XRi

. Thus, in our formulation, we do need at
least three different mapping functions: fV : VRi

→ VS ,
fX : XRi

→ XS , and fE : ERi
→ E′S , respectively,

where E′S ⊆ ES is a path through S consisting of
multiple edges e ∈ ES . Furthermore, we extend the scalar
capacities and demands of resources and allow capacity
and demand vectors that represent capacities and demands
of different types, e.g., CPU cycles, GPU cycles, memory,
storage, etc. Thus ci(s) and di(r) refer to capacity and
demand of type i for physical resource s or virtual resource
r, respectively.

D. VNE for Data Centers

As explained in Section II, in our study, most existing
approaches fell short with respect to a subset or all of
our requirements. Regarding the requirement to be suited
to physical substrate topologies that are more commonly
found in data centers, the algorithm presented by Rabbani
et.al. [21] is the one which we leverage to meet this need.
In their approach a minimum cost flow (MCF) formulation
is used to map virtual machines onto physical servers
and virtual switches onto physical switches. In order to



allow mapping multiple servers from the same request
onto a single physical server, the algorithm operates in
n rounds for n virtual servers in set V , where in each
round only a single virtual server vi ∈ V is mapped to a
set of possible substrate nodes s1, s2, ..., sm ∈ S. In the
first round S only consists of s1. If no mapping can be
found, S is extended by an adjacent server and the MCF
solver runs again. The algorithm thus solves the MCF
problem for server mapping O(m × n) times. The cost
function is given as a(i, j) = b(j) × 1

|∆1(j)−∆1|
, where

b(j) is the used bandwidth of server j and ∆1 is the mean
of the residual capacity of type 1 (here CPU capacity).
Switch mapping is carried out in a similar fashion, but
bypasses the requirements of n × m rounds at the cost
of only allowing one virtual switch from a request on a
single physical switch. Finally, paths are mapped using
an all-pair shortest path algorithm. Coordination between
node and link mapping is achieved through the bandwidth
parameter b(j) making sure that virtual nodes are not
placed on physical nodes with already exhausted upstream
bandwidth. Although, this is not a full guarantee that the
link mapping will succeed (as higher link layers may
already be fully utilized). This heuristic works well in
our experiments and achieves sufficiently high acceptance
rates and network utilization.

E. Expansion and Contraction of Networks

In a virtualized infrastructure, scaling to meet higher
demands typically means to horizontally scale the network,
which can be as simple as adding new virtual machines
that are connected to the existing part of the cluster.
At the initial deployment of a new service or product,
often a couple of tens of connected VMs are sufficient
to serve early adopters or test users. As an application
matures, services need to cope with substantial increases
in requests over time. For this, cloud services often use
setups that are able to automatically predict workloads and
scale their infrastructure using their cloud provider’s API
ahead of time in order to avoid any performance drops
or bottlenecks. Depending on the desired granularity, this
means that virtual networks need to scale often, sometimes
several times per day [17], [20].

As most existing VNE work only allows embedding
or removing complete networks, we introduce two new
primitives: expand and contract. We extend the above
described embedding scheme with these new primitives.
Expand The expand operation takes as arguments the
virtual network to be expanded, the network topology to be
added to the network, and a set of constraints that define
what link ends of the new topology need to be connected,
and where, to the existing topology. We elaborate on the
realization of this primitive further below.
Contract The contract operation removes a list of nodes
from a specific network including all links that are not
needed anymore. We explain this more in section III-E2.

1) Expand Networks: Conceptually, the expansion of a
network is the embedding of a superset V ′ of the existing
network with additional placement constraints. Specifi-
cally, each existing node is annotated with a constraint
such that it may only be placed on the physical node to
which it is currently mapped. Additionally, the constraint

set includes the constraints of how the new nodes (V ′−V )
should be connected to the existing nodes V .

In the modified bipartite minimum cost flow formulation
for expansion, the only egress edge from an existing node
leads to the physical node to which it is currently mapped.
However, this comes with the complication that additional
capacity must be added to the existing physical nodes in
order to allow for the concurrent mapping of V and V ′,
if V is not unmapped before running the algorithm for
V ′. Alternatively, V can be internally unmapped before
solving the expansion MCF program. In either way, the
expansion must be carried out as a transaction, making
sure that if the expansion algorithm is unable to expand
the network, the original network V is still mapped and
all node and link capacities are reset.

In addition, the new nodes should be placed as close to
the existing nodes as possible. As a result, this distance
must be taken into account in the objective function. We
adapt the cost function to take into account the proximity
to the existing part of the network, such that

a(i, j) = b(j)× 1

|∆1(j)−∆1|
+ δ(i, j), (1)

where δ(i, j) is the distance (in terms of hops) from the
closest (in terms of hops) node to i that is part of the
original network if i was placed on j.

2) Contract Networks: Contracting a network is
achieved by removing a subset V ′ from V and freeing the
resources in the physical network. It is crucial, however,
that the nodes (and links) in V ′ do not have the effect of
partitioning V into multiple parts leaving the network in
an inconsistent state. This means that the subset of nodes
to be deleted must be carefully chosen and cannot just be
sampled randomly, which is guaranteed in our solution.

F. Implementation and Cloud Simulator

We implemented our virtual network embedding algo-
rithm using the C++ bindings of the Gurobi Linear Pro-
gram Solver [1]. As an illustration of the runtime of this
algorithm, consider a topology with four spine switches,
24 leaf switches, and 16 servers per leaf, resulting in
a network with 28 switches and 384 servers. Using a
network of this size with the described properties we
achieve embedding times roughly between 0.1 and 15
seconds and expansion times between 3 and 40 seconds
on a 3.1 Ghz Core i7 processor with 16GB of memory.

IV. RESOURCE FRAGMENTATION

As alluded to in Section I, embedding, removing, and
scaling virtual networks causes the network to become
fragmented. This is analogous to fragmentation on a
hard drive. Fragmentation does not only cause rejections
of virtual network requests, but also negatively affects
application performance and InP efficiency through long
paths between connected VMs.

A. Motivating Examples

We show the effects of fragmentation in two examples.
First consider the network from Figure 1. For this

example, we ignore link and switch capacity. While the
expansion request of the red network can be accommo-
dated (see Figure 1b), this mapping results in a distance
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inflation between the switch (round icon) and the new
server (square icon) of a factor of 3, negatively impacting
delays along this path. After defragmentation each virtual
link again corresponds to one and only one physical link.

Second, consider a substrate network S consisting of
one switch s1 connected to two servers s2, s3 over links e1

and e2. A virtual network request R1 of the same topology
has been embedded onto this network utilizing 30%, 50%,
and 50% of the nodes, as well as 50% and 50% of the
links. A second VN request R2 now needs to be embed-
ded. The two networks are depicted in Figure 3. Even
though the overall resource utilization of the substrate
network is less than 50% and the overall residual capacity
is sufficient to accommodate the request, R2 would be
rejected, as there is no physical node with a resource
residual of ≥ 80% available. Mapping both virtual servers
from R1 onto s3 would entirely free up s2 and R2 could be
successfully mapped. Ideally, a defragmentation algorithm
in this case would do exactly that.

B. Impacts of Resource Fragmentation and Metrics

Resource fragmentation affects both the Infrastructure
Provider, as well as the tenant. For the InP, a high
path stretch means unnecessary utilization of network
resources, including switches. In this paper, we consider
switch resources to be forwawrding rules or TCAM space
and not backplane bandwidth. Of course, a virtual link
passing through a switch (even if label switching technolo-
gies are used to reduce forwarding state), uses resources
on this switch, most notably in terms of bandwidth and
power consumption. These resources could be saved using
a more optimal network mapping. Figure 4a shows the
increase in mean path stretch over all embedded virtual
networks in a physical network with a leaf-spine topology
consisting of 28 switches and 384 servers when adding,
deleting, expanding, or contracting virtual networks 1000
times. These results were obtained from discrete event
simulations and are averaged over 10 runs with different
randomized workloads. For the tenant, an increase of
path stretch means amplified variability in path latency,
resulting in poor application performance, prolonged job
completion times, and higher cost.

Furthermore, based on how resources are blocked
throughout the physical network (as illustrated in the

previous section), virtual network requests need to be
rejected even though the network is not entirely utilized.
This impacts the virtual network acceptance rate and thus
the provider’s revenue. Figure 4b shows the decline of ac-
ceptance rate over time in the above described experiment.
This primarily happens when all resources are equally
utilized, i.e., the resource utilization variance is low (cf.
second example in section IV-A).

V. DEFRAGMENTING THE NETWORK

To overcome the issue of fragmentation in virtualized
data centers, instead of further improving VNE algorithms
to minimize fragmentation, we propose a new network
management primitive: network defragmentation.

A. A New Network Management Primitive

In our model, Network Defragmentation means to peri-
odically run a defragmentation algorithm on the network
infrastructure. This is analogous to a defragmentation
program in the context of disk fragmentation. We be-
lieve this is a better approach than further improving
VNE algorithms for two reasons. First, when running
virtualization in a full online manner, i.e., without having
knowledge about the duration of virtual network requests
and upcoming workloads, it is complex to customize VNE
algorithms to properly account for fragmentation simply
because of their inability to know about upcoming re-
quests. This is particularly true when allowing for dynamic
scaling, including expansion and contraction of networks
as described earlier (section III-E). Second, with modern
machine and network migration techniques and the use of
centralized storage, the cost for (even large) migrations can
be low; and thus presents a viable option to significantly
improve network performance, efficiency and revenue.

B. Defragmentation Heuristics

Two key questions include when to migrate, and which
networks to migrate (and where to). These questions
correspond to the monitor and defrag planning processes
illustrated in Figure 2. In this paper we propose initial
heuristics, with a goal of studying the performance benefits
of defragmentation. We intend to study further optimiza-
tions as future work.

1) Monitor (when to migrate): When to perform a
defragmentation is a complex question, as there is over-
head in performing migration. There are generally two
approaches one can follow: one that reacts to some con-
dition in the network, and one that operates periodically.
A reactive system would monitor the mappings for some
condition indicating ‘fragmentation’ (e.g., average path
length or the utilization variance is low). Alternatively, a
periodic system would be routinely scheduled, whether at
a certain time of day, or after a certain amount of activity.
For our system, we implemented such a periodic system
which triggers a defragmentation after every di rounds.

2) Defrag Planning (what/where to migrate): Deter-
mining what to migrate and where to migrate it to is also a
complex problem. To serve as bounds on performance, in
this paper, we perform a complete remapping. That is, we
unmap all virtual networks, sort by network size (biggest
to smallest), and re-embed each of them in order. This
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(b) Defragmentation every 100 rounds
Fig. 5: Improving application performance (reducing the mean path length) with defrag. Note the periodic sharp drops
in the path length, which correspond to when a defragmentation was performed.
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Fig. 6: Path Length Savings

effectively compensates for the dynamic behavior (adding,
deleting, expanding, and contracting) networks, as it is
reformulated as a series of add operations. Re-mapping a
subset of the network (e.g., the most fragmented parts of
the network) is a longer term goal.

VI. EVALUATION

We evaluate the efficacy of our proposal by our key frag-
mentation metrics: virtual path length stretch distribution
and resource utilization distribution.

A. Simulation

For our experiments, we again use a leaf-spine physical
topology with 384 servers and 28 switches. The requests
are sampled at equal probability from the three used
virtual topologies (VC, VOC, and 3T). All previously
defined network parameters are sampled randomly from
uniform distributions with varying parameters. For each
experiment, we run 1000 rounds of events (map, expand,
contract, delete) at equal probability. We run each experi-
ment 10 times with different workloads sampled from the
same distributions. Our baseline dataset contains runs of
all workloads without defragmentation. In dataset 1 we
remap all currently mapped networks every di = 200
rounds after an initialization period of 200 rounds. In the
second dataset we remap every di = 100 rounds.

B. Virtual Path Length

We see the most promising results in reduction of
virtual path lengths, the metric that mainly impacts overall
network performance. Figure 5 shows the development of
mean path length stretch over time for both datasets. The
time steps and significant reductions at each defragmen-
tation cycle are clearly visible. On average, when using
defragmentation, we reduce the mean path length by 0.25
over baseline (defrag every di = 200 rounds) and 0.31
over baseline (defrag every di = 100 rounds), respectively.
Due to the fewer physical links used, this results in link
utilization savings of 5.7% and 8.1% on average. The full
distributions are depicted in Figure 6a.
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Fig. 7: Server Utilization Distributions

When looking at the individual path lengths, we can see
that the number of virtual paths with the worst possible
path length of 4 (diameter of our topology), is reduced by
52% on average. The number of paths with length 3 is
reduced by 62% on average. Figure 6b shows the fraction
of paths by length, on average, before defragmentation
(left side) and after defragmentation (right side).

C. Utilization Distribution

As explained in the first example of section IV-A, in a
fragmented network we can end up with a lot of partially
used resources. This is opposed to a utilization distribu-
tion, where resources are either heavily utilized or lightly
(or not at all) utilized. VNE algorithms tend to introduce
this effect over longer runtimes (cf. Section IV-B). While
it is harder to quantify this effect, the variance (denoted as
σ2) of the utilization distribution can be used as a metric.
A lower variance here indicates higher fragmentation.

Graphically, we can illustrate this effect by ordering all
resources by utilization (from low to high) and plotting
the resulting list. Figure 7 shows two such graphs. The
left graph shows the (“best”) case where all resources
are either equally utilized at 80% (σ2 = 0), or either not
utilized at all (20% of them) or fully utilized (80% of
them). Obviously, the latter case (σ2 = 0.16) is almost
impossible to achieve, especially given that we primarily
optimize for lower path length. However, the plot on
the right side shows that defragmentation improves the
network toward this goal, where the utilization distribution
has a variance of σ2 = 0.024 before defragmentation and
doubles to σ2 = 0.048 after defragmentation. In particular,
we more than double the fraction of servers utilized by less
than 50% from 9.8% before defragmentation to 20.1%
after defragmentation. From an operations perspective,
having more completely free resources leaves room to
add new virtual networks and allows for opportunities to
conserve energy by shutting off unused resources.



VII. DISCUSSION

While we see promising results for our first steps toward
a network defragmentation solution, we see two main areas
for further research:

a) Fragmentation Analysis and Selective Migration:
Our previously described fragmentation metrics all quan-
tify global network properties, however during our simu-
lations and using a network visualization tool, we saw that
request rejections can be due to comparatively small and
local effects, such as a single or a few highly utilized links
effectively blocking underutilized servers or switches from
the rest of the network rendering these resources useless
for the VNE algorithm. For future work, we envision
techniques detecting such scenarios and then performing
defragmentation in just a small zone of the data center. At
the cost of embedding time, such detection and mitigation
could be integrated in the VNE algorithm to further
improve acceptance rates.

b) Minimizing Migration Cost and Performing Mi-
grations: Even though modern machine and network
migration techniques are able to migrate resources with
negligible downtime, there inevitably is a cost associated
with moving virtual resources from one physical link or
server to another. We showed an upper bound for what
defragmentation can achieve; in future research, the cost
of migration should be factored in remapping networks.
This way, a trade-off can be made between migration cost
and optimality of placement. Additionally, after computing
a new mapping, the exact migration steps to realize this
mapping must be determined. For example, migration
steps can have dependencies among each other, which
sometimes are circular dependencies such that resources
must effectively be swapped using some scratch capacity.

VIII. CONCLUSIONS AND FUTURE WORK

Elasticity is one of the key properties of cloud comput-
ing, where tenants can scale their infrastructure up-and-
down based on demand. Most virtual network embedding
solutions (i) do not allow any primitives for scaling an in-
frastructure, only creating and destroying, and (ii) provide
only a static mapping, where, once mapped, the virtual to
physical mappings do not change. In this paper, we intro-
duced the concept of network expansion and contraction
as a key requirement for VNE algorithms and provide a
formulation for this problem. We show how operating a
network in this manner amplifies the problem of resource
fragmentation, which can degrade the performance of
applications. In response, we introduced a new network
management primitive, network defragmentation, which
leverages migration capabilities to remap embeddings to
optimize application performance. Through simulations,
we showed that a simple network defragmentation scheme
can successfully improve network performance and reduce
fragmentation in the substrate network. As a next step, we
will build a system to run the defragmentation. We also
intend to further optimize the described defragmentation
planning in two directions: determining when to perform
defragmentation, and determining a minimal subset of net-
works that can be migrated while still achieving significant
reductions in fragmentation.
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