SDN in Wide-Area Networks: A Survey

Oliver Michel, Eric Keller
University of Colorado Boulder
{oliver.michel, eric.keller} @colorado.edu

Abstract—Over the past several years, Software Defined Net-
working (SDN) has emerged as a new and promising paradigm
for the management of computer networks. While we have seen
many use-cases and deployments of SDN in data center networks,
wide-area networks still heavily rely on legacy routing and traffic
engineering technologies. Rapidly increasing traffic demands
(mainly due to increasing usage of video streaming and voice over
LTE deployments), however, motivate the development of novel
routing and more efficient traffic engineering mechanisms. New
approaches leveraging an SDN paradigm in wide-area networks
promise to mitigate many of today’s limitations, inefficiencies,
and scalability issues. In this paper, we give an overview of the
current state of the art in Software Defined wide-area networking
research and technologies and give directions and discuss ideas
for future work.

I. INTRODUCTION

Software Defined Networking (SDN) continues to attract
both industry and research communities as a modern paradigm
for the management and operation of computer networks.

Large-scale computer networks typically consist of a variety
of devices that perform tasks ranging from switching and
routing to advanced network functions, such as packet filtering
or Network Address Translation (NAT). These boxes come
from different vendors, are incrementally deployed, have dis-
tinctive management interfaces, and are usually configured on
a per-device basis. Operating a network in this manner hinders
innovation and does not only make the operation unnecessarily
complicated, but also comes with high operational expenses
(OPEX) [3], [4].

While there are centralized management systems that can
configure systems of different types, these solutions are often
vendor-specific. Software Defined Networking promises to
solve many of these management headaches. It is vastly
changing how computer networks are managed by providing
a centralized vantage point and management interface to the
entire network. In this way, network operators can configure
the network from a central location using a standardized
application programming interface (API) across devices and
vendors.

This is mainly enabled by SDN’s two main defining char-
acteristics. First, SDN separates the network’s control plane
(which decides where and how a packet is forwarded) from
the data plane (which then handles the packet at the device
according to rules defined in the control plane). Furthermore,
SDN consolidates the control planes of different devices
providing a unified, centralized view of the network.

In this architecture, the centralized controller runs programs
that control data plane elements using a well-defined API. This

API provides an abstraction of the data plane state, as well as
possible operations on this state (independently from the exact
type of network device or its manufacturer).

This separation between the control and data plane allows
for data plane devices to be designed in a generic and
simplified way. In other words, network devices can become
simple, unintelligent boxes that have the sole responsibility
of handling packets based on rules as dictated by the control
plane. SDN-enabled forwarding elements commonly expose
a match-action abstraction. This means that network packets
passing through such a device are assigned to an action, such
as forward or drop, by matching a subset of the packet header
to a header space defined in a rule.

While most research in SDN applications has been focused
on data center settings, recently there has been an increased in-
terest in SDN for wide-area network (WAN) scenarios. WANSs
are typically expensive and difficult to manage. They consist of
specialized and expensive high-performance routers increasing
capital expenditure (CAPEX), as well as complex configura-
tion requiring extensive management efforts increasing OPEX
and failure probability. Additionally, WANs almost always
rely on a failure-prone underlying (often optical) transport
network. In order to mask such router or link failure and
deal with demand spikes, WANs are often over-provisioned
[9]. Centralized control and load planning through SDN can
help distributing load more wisely, adapting to varying demand
more dynamically, and coping with failure more quickly. This
can help reduce the degree of required over-provisioning and
overall complexity dramatically.

In this paper, we provide an overview of the state of
research in the field of Software Defined Networking for wide-
area networks. We first give an introduction to the evolution
of programmable networks and SDN, then present current
research in the field of Software Defined WANs (SD-WAN),
before concluding with directions for future research in this
area.

II. HISTORY OF SOFTWARE DEFINED NETWORKING

Underlying concepts of Software Defined Networking and
programmable networks date back over 20 years. This is long
before the term SDN was coined and became widespread. In
particular, the programmability aspect of networks was already
a hot research topic in the mid-1990s. We now give a brief
overview of the three main steps that eventually led to the
SDN technology and architecture that we have today.



A. Active Networks

With the rapid growth of the Internet beginning in the last
decade of the 20th century, there was a need for new, advanced
protocols as the primary use case of the Internet moved away
from email and file transfer for the academic community
to more generic and consumer-oriented use cases. This was
mainly driven by the rise of the World Wide Web; however, the
slow standardization process through the Internet Engineering
Task Force (IETF) was a source of frustration for researchers.
As a result, researchers believed a programmable network
would accelerate innovation like it has been the case with high-
level, general-purpose programming languages for computers.
In this context, the Active Network architecture [17] was the
first effort toward a fully programmable network. The idea
was to inject customized programs into network nodes that
are executed on the respective node when a packet traversed
it. These programs were either installed on the network device
and invoked by the presence and setting of a certain header
field or integrated into the packet itself. This allowed third
parties to develop and deploy custom functionality within
the network enabling faster network innovation. While Active
Networks certainly enabled network programmability, the ar-
chitecture never became widely deployed. We believe that the
Active Networking approach was too radical at the time, as it
broke many conventional primitives widely used in networked
systems (such as the concept of a protocol stack). Still, Active
Networking was a very important step towards generalized
network programmability. Later trends and technologies that
eventually formed SDN, resemble many of the ideas of Active
Networks in a less radical fashion.

B. Control- and Data Plane Separation

With the Internet rapidly growing even further in the begin-
ning of the 2000s, Internet Service Providers (ISPs) and other
network operators were looking for new ways to manage their
in size and complexity increasing networks. In particular, two
issues needed to be addressed:

Scalability. The Internet’s inter-AS routing protocol is the
Border Gateway Protocol (BGP). While AS Border Routers
(ASBR) maintain a TCP session with an adjacent ASBR inside
the other AS the network is peering with, all routers inside an
AS must be connected in a full mesh using the AS-internal
version of BGP (iBGP) to propagate routes learned at the
border routers into the network. Clearly, the required full mesh
leads to an undesirable quadratic scaling behavior of iBGP
sessions as a function of the number of routers within the
AS. Route Reflectors mitigate this problem up to some degree
but are prone to route oscillations and forwarding loops. This
problem led to the first systems advocating a full separation
of the control and data planes; the Routing Control Platform
(RCP) [2] is such a system. RCP is a centralized platform
mimicking a full mesh of iBGP sessions using a central
peering platform. It performs route selection on behalf of
routers and communicates a single best (selected) route using
standard iBGP sessions to the routers. The main advantage is
that RCP provides the intrinsic correctness of a full mesh of

iBGP sessions together with the vastly improved scalability of
a route reflector setup.

Manageability. With higher demands in network pre-
dictability, reliability, and performance, better management
abstractions and more fine-grained control over the actual path
a packet takes through the network (i.e., traffic engineering)
became a desired functionality. As computer networks are
large, complex, distributed systems with countless dependen-
cies between modules and configurations, small, local events
and mistakes can have significant, cascading impact across
the entire network resulting in service deterioration, security
vulnerabilities, or even complete outages [3], [4]. In order to
mitigate these issues, in [4], Greenberg proposes a complete
refactoring of network functionality based on configuration of
network-level objectives using a network-wide view from a
central vantage point with direct control over network devices
resulting in a separation between the control and data planes.
The main argument for this approach is that networking
logic should be separated from distributed systems issues
that commonly lead to failures. Casado et al. [3] further
elaborates on this concept and presents a deployment of such
an architecture with Ethane, the first instantiation of what
eventually became SDN. Ethane is a management framework
for enterprise networks using a single network-wide, fine-
grained security policy that is centrally configured and then
enforced throughout the network.

C. Control Protocols

With the emergence of various architectures separating the
network control and data planes, the need for more generalized
control protocols became apparent. In order to enable real-
world deployment, a control protocol for hardware vendors
to support was required. OpenFlow [15] was the first (and
is still the most prominent) effort to balance the idea of a
programmable network and some pragmatism (i.e., standard-
ization) that would enable deployment on actual networking
devices. OpenFlow brought two major intellectual insights to
the world of Software Defined Networking. First, it aimed at
generalizing network devices and functions by a simple packet
based match-action pattern. Secondly, OpenFlow introduced
the notion of a Network Operating System. A software that
exposes a simplified API and programming abstractions (as
compared to the plain OpenFlow wire protocol) to applications
that desire to control the network. Such applications can now
be written in any language that the network operating system
supports or use some sort of standardized API that the network
operating system exposes.

As mentioned earlier, OpenFlow is not the only protocol
that can be used for communication between the control
and data planes. For example, in carrier networks, a Path
Computation Element (PCE) architecture is often used to
obtain a global view at the network topology and to centrally
control traffic engineering. The Path Computation Element
Protocol (PCEP) is then used in a similar fashion to OpenFlow
to install forwarding state on routers. Other examples for such



communication protocols are NETCONF, RESTCONF, and
the Open vSwitch Database Protocol (OVSDB).

III. CHALLENGES IN WIDE-AREA SDN

Wide-area networks pose special challenges to designers of
SDN systems. This is mainly due to the reason that link failure
and disrupted connectivity between the control and data planes
in a WAN are somewhat more common than in a data center
setting. Data centers often have dedicated control networks,
encompass a high degree of parallel links, are scarcely exposed
to physical threats (such as cable cuts), and are deployed
in a safe and controlled environment. Thus, imposing strict
failure resiliency requirements on SD-WANSs (as opposed to
data center networks) makes the use of a distributed control
plane almost inevitable. Furthermore, the varying propagation
delays through a WAN are typically in great excess of those in
a data center. This is prolonging the time to reach a consistent
updated network configuration.

We now highlight three main challenges we identified that
need to be tackled when designing a SD-WAN system. Failure
resiliency and scale-out behavior can be achieved with a
decentralized controller architecture, however the question
remains how to keep the control plane logically centralized.
That is how to maintain SDN’s global network view requiring
consistent, centralized state among all controller instances?
Furthermore, when using multiple controllers, where should
these controllers be placed in regard to the different data
plane elements and how many controllers are necessary at
all? Finally, in the presence of high latencies between the
control and data planes, how can the data plane configuration
be updated such that every packet traversing the network
is handled based on a single, consistent policy across all
forwarding devices?

A. Distributing SDN Controller State

The separated control and data planes together with a
control program and a network operating system define the
overall architecture that most SDN deployments today follow.
However, in this simplified picture, the centralized controller
does not only often come with poor scaling behavior as it
represents a single choke point, it also is a single point of
failure. Control platforms with undesirable properties com-
ing with a centralized architecture include NOX, Floodlight,
and Ryu. In order to overcome these two issues, distributed
controllers have been proposed [1], [12]. These controllers
provide scale-out performance and fault tolerance. While in
a data center setting, an SDN controller mainly has high-
throughput requirements (i.e., operations per second), we argue
that distribution capabilities are more important for WAN SDN
controllers.

Nevertheless, distributing controller instances across the
network naturally also requires distributing the controller state
(i.e., configured match/action rules, topology information, and
statistics) posing the challenge that this state must be kept
consistent among instances. Furthermore, controller failure

must be handled gracefully without disrupting network op-
eration or causing state corruption. ONOS (Open Network
Operating System) is a controller architecture complying with
these requirements. It offers two main properties: (1) a global
network view and abstraction sharing network state among all
ONOS instances, (2) extensive scale-out capabilities for both
performance and fault-tolerance [1]. In a network controlled
by ONOS, each switch has a primary controller that programs
its forwarding plane; however, the switches’ state is shared
among all controller instances and persisted in the distributed,
eventually consistent Apache Cassandra key-value store mak-
ing ONOS’s network view eventually consistent as well. In
the case of a switch or link failure, a consensus protocol
provided by Apache Zookeeper automatically selects a new
primary controller.

B. Placing Controller Instances

As alluded in the previous section, placing multiple con-
trollers in a WAN deployment, can greatly benefit control
plane latency and fault tolerance. Still, the question is how
many controllers to deploy and where exactly to place them.
Heller et al. [7] provide a first definition the controller place-
ment problem and quantify the impact (particularly in terms of
latency) of different placement options and strategies on real
WAN topologies. The authors reduce the placement problem to
three underlying, fundamental problems based on the desired
metric: (1) when optimizing for average-case latency, the
problem reduces to the minimum k-median problem, (2) when
optimizing for worst-case latency, it reduces to the minimum
k-center problem, (3) when nodes must not exceed a specific
latency bound to the next controller, the problem can be stated
as the maximum cover problem. While all of these problems
are computationally intractable (N P-hard), the authors show
that for medium-sized networks, approximations can vastly
improve latency metrics over random placement (1.4 to 1.7
times higher latency). Surprisingly, the paper also shows that in
the majority of cases for the (real) wide-area networks studied,
a single controller is sufficient to provide protection and
restoration guarantees comparable to optical 1 : 1 protection.

C. Updating SDN Switches in a Consistent Manner

While Software Defined Networks enable dynamic and cus-
tomized data plane configurations, updating the data plane in a
large network (i.e., the packet handling rules on the switches)
can cause severe inconsistencies in how packets are handled
among devices. This is mainly due to the infeasibility to update
the entire network atomically while maintaining full network
operation. As a result, forwarding devices are typically updated
in steps. Even if the initial and final configuration states are
correct, network devices may be in inconsistent states during
the update process. This can lead to major instabilities such as
interrupted connectivity, forwarding loops, or access control
violations. Moreover, intermediate update states can violate
bandwidth constraints on a given path potentially causing
major congestion. This happens when a link is oversubscribed
between the initial and final update steps. Several solutions



have been proposed to cope with such inconsistencies. Most
of them, however, rely on planning an exact update order
statically before actually rolling out updates to the switches
in this pre-determined order [8], [11], [14]. These solutions
do not adapt to runtime variabilities within the control plane
(such as varying CPU load or varying RPC delays), which can
still cause inconsistencies while rolling out an update.

Reitblatt et. al. [16] address these challenges by providing
a theoretical foundation and proposing a novel abstraction for
network updates that guarantees consistent handling on a per-
packet basis. The authors introduce a per-packet consistency
model where each packet flowing through a network is guar-
anteed to be processed according to a single configuration.
Additionally, a per-flow consistency abstraction model, where
each packet belonging to a flow (e.g., a TCP connection) will
be processed consistently across the network, is presented.

Jin et. al. [10] propose a runtime scheduling system that
uses heuristics to pick a path through a dependency graph
containing the required update steps. Using this approach, a
scheduler can select correct paths through this graph and the
ordering of updates on the fly based on network behavior.
The system predetermines valid orderings of updates and then
heuristically applies them based on realtime behavior of the
switches and network. Dionysus takes a two-step approach
where first a dependency graph of the steps to reach a con-
sistent final state is computed. Then, at runtime, a scheduler
selects a path through this graph that becomes the order of up-
dates maintaining consistency and correctness in the network.
Dionysus significantly reduces overall update times by 53% to
88% depending on the type of update and topology compared
to other solutions. Dionysus also reduces link oversubscription
and thus congestion during updates significantly (41% less
than comparable approaches like [8]).

IV. BENEFITS OF WIDE-AREA SDN

Before continuing our discussion, we present two SD-
WAN deployments from major cloud providers to illustrate
the benefits that this technology offers for network efficiency
and resiliency. Cloud providers like Apple, Microsoft, and
Google run their services from data centers distributed around
the planet. While those data centers primarily serve content
to customers, there is an increasing demand for inter-data
center traffic exchange. This is mainly due to the specialized
and distributed character of services and subsystems requiring
communication among each other, as well as extensive backup,
synchronization and migration tasks across physical locations.
Thus, inter-data center (wide-area) networks are a critical
infrastructure for such providers and are commonly over-
provisioned and consequently underutilized by around 30% to
60% in order to cope with failure [8]. The global network
view and fine-grained control over routing decisions that
SDN promises can be leveraged to achieve centralized traffic
engineering optimizing for more efficient use of the expensive
network resources. Microsoft and Google both employ SDN
technologies for their inter-data center networks and have
published technical details of their systems.

The first system, Software-driven WAN (SWAN) [8], from
Microsoft, is a centralized traffic engineering (TE) solution
that uses fine-grained policy rules and a centralized scheduler
to carry significantly more high-priority traffic (e.g., traffic
for interactive applications) while maintaining fairness among
services of the same class. SWAN addresses shortcomings of
today’s primarily used decentralized TE practice (i.e., MPLS-
TE in conjunction with ECMP routing) and makes a strong
point for using a global network view and SDN in order to
solve the global and network-wide problem of TE. SDN’s
global network view is used here to find globally optimized
bandwidth to path assignments through the network. Fine-
grained control in SDN is used to make and enforce bandwidth
reservations on a meticulous, per-application basis. By doing
so, the need for over-subscription is drastically reduced, and
resources are used more effectively. As a result, SWAN
can carry about 98% of the theoretically possible network
traffic while MPLS-based technologies carry only around 60%.
Furthermore, the authors identify the need for frequent data
plane updates in order to maintain utilization at a high level
and address this problem by presenting a consistent update
algorithm.

The second deployment, B4, is Google’s globally-deployed
software defined inter-DC WAN solution [9]. The system
exploits three unique properties of their network to deploy
a centralized TE solution achieving high link utilization and
a two times to three times efficiency improvement relative to
standard (decentralized MPLS-based) practice. First, Google
controls all IP-layer network equipment all the way to the
edge of the network. Second, most bandwidth is used for
low-priority, planned, large replication tasks between sites.
Finally, the network only consists of a few dozen sites making
a centralized control-plane approach feasible. B4 employs
custom switches controlled by a slightly modified version
of OpenFlow. The network controller dynamically reallocates
bandwidth for shifting application demands and also provides
dynamic rerouting in the case of link or switch failures. The
SDN-based control plane also integrates with standard legacy
routing protocols that make it possible to completely disable
centralized TE while keeping the network fully operational.
Many B4 links run at 100% utilization and all links average
at 70% utilization over extended time periods.

While, both B4 and SWAN use SDN in the context of
inter-DC wide-area networks and present similar high-level
architectures focused on traffic engineering for optimized
resource usage of expensive wide-area links, their secondary
focuses are vastly different. Hong et al. with SWAN make
significant contributions in the field of update consistency
(cp. section III-C) and leverage frequent data plane updates
together with correctness guarantees to maintain high uti-
lization over extended periods of time. The authors of B4
put an emphasis on integrating a (TE-centered) SDN control
plane with existing legacy routing protocols (in this case BGP
and IS-IS) as a fallback mechanism. The Routing Application
Proxy (RAP) of B4 interfaces with standard Quagga software
switches and receives BGP and IS-IS control messages directly



from the SDN-enabled switches through the software slow-
path.

V. EXPANDING BEYOND A SINGLE DOMAIN

Intra-domain SDN solutions mainly tackle problems around
shortcomings of legacy interior gateway routing protocols or
traffic engineering practices (such as MPLS-TE) to make better
use of expensive wide-area links (as explained in section IV).
The problems addressed with inter-domain deployments are
somewhat different. Most of these problems stem from the de-
facto standard inter-domain routing protocol BGP, in particular
from its exterior version eBGP. BGP, as the standard protocol
for almost all inter-domain peering in the Internet, keeps the
Internet running despite extremely complex operational and
financial interests from the various network operators. This
means that BGP does not only come with technical challenges
such as intra-domain scalability issues [2], slow convergence
times, route flap damping, or route oscillation; it also imposes
operational challenges for network operators because they
have to use BGP’s embedded mechanisms like local preference
attributes, Multi-Exit Discriminators (MED), or AS-PATH
prepending to implement complex policies representing their
business objectives. Those instruments need to be manually
configured and are error-prone, which commonly leads to
(sometimes global) routing instability or divergence.

Similar to the intra-domain case, SDN can offer new
opportunities to overcome these problems. Again, a global
view of the network can be leveraged to make network-wide
decisions over how packets are forwarded. Since autonomous
systems are operated by different parties with different net-
work equipment, policies, and business objectives that cannot
be shared with other networks, applying logically centralized
control across multiple administrative domains is somewhat
more complex and poses different challenges compared to the
intra-domain case.

One of the first papers on this issue was published by
Kotronis et al. [13]. The authors propose a rather drastic
approach that is to completely outsource inter-domain routing
logic to a third party (i.e., a trusted contractor). This contractor
can specialize in the practices of Internet routing, freeing
network operators from complex BGP-related administration
tasks to comply with its policies. This approach has three
main advantages: (1) as the contractor performs routing con-
trol for multiple ASes, it can optimize global routing using
its birds-eye view, (2) it can detect policy conflicts and
help with collaborative troubleshooting between ASes, (3) as
inter-domain routing would be centrally controlled, existing
mechanisms (i.e., eBGP) could be improved among networks
having the same contractor without disrupting connectivity,
thus accelerating innovation in inter-domain routing.

A more recently presented system uses some of these ideas
but applies them in a more natural way that keeps network
operators entirely in control of their peering policies. Their
approach is applied at Internet Exchange Points (IXP). An IXP
is a physical infrastructure where network operators exchange
traffic and BGP route information between their networks

(ASes) over a common layer 2 fabric to which all networks are
connected. IXPs present a natural starting point for wide-area,
inter-domain SDN deployments because SDN deployment at
a single IXP immediately affects a large number of providers.

SDX (Software Defined Internet Exchange Point) [6] is an
IXP that consists of an SDN controller instead of a route server
and an SDN-enabled switch instead of the plain L2 fabric.
Each AS connected to this SDN switch can now write its
custom policies that are being enforced on its private virtual
switch. The SDX controller composes these rules (which are
expressed in the Pyretic programming language) behind the
scenes and installs the actual forwarding rules on the SDN-
enabled IXP switch. Furthermore, SDX integrates with legacy
BGP routing through its integrated route server. This also
means that not every ISP at an SDX must use the SDN
capabilities of the SDX system but can also exchange its
routes using standard BGP, like in a traditional IXP. The SDX
controller runs integrity checks on all requested policies to
make sure that they do not create conflicts or forward traffic
to prefixes that have not been advertised by the receiving
AS. SDX however, explicitly enables overwriting BGP default
routes for use cases like application-specific peering, which
can be realized by not only using the destination IP prefix for
route selection, but also other match fields that are available
in OpenFlow. The policy composition of SDX can generate
significant numbers of rules to be installed that are well beyond
the capabilities of modern OpenFlow-enabled switches (in the
order of tens of millions). The authors further improved their
system to an industrial-scale SDX (iSDX) [5] that leverages
various rule transformations, outsourcing of rules to ASBRs,
and recent advances in switch hardware (L2 bit mask match-
ing) to encode reachability information in a packet’s L2 header
further reducing required centralized data plane state.

VI. RESEARCH CHALLENGES AND THE FUTURE OF
SD-WAN

After giving an overview of the history of SDN and
presenting the state of research in SD-WAN, we identified
areas with ongoing challenges in the context of wide-area
networking that we believe can greatly benefit from an SD-
WAN approach. While most of these challenges have been
studied in the context of a traditional networking paradigm, we
believe leveraging the main tenets of SDN can have significant
impact on the way we handle common issues in wide-area
networks. We now briefly present some of these potential
research areas:

Distributed Control Planes. While [7] discusses the place-
ment problem and [1] presents a fully distributed controller
architecture, it remains unexplored how distributed control
planes behave in real-world wide-area topologies that are
significantly harder to study compared to standard data center
topologies such as CLOS or FatTree.

Data Plane Load Balancing. Wide-area networks heavily
use parallel links based on constraints in the underlying trans-
port network (e.g., wavelength availability). SDN’s global view
of the network and more fine-grained forwarding capabilities



offer the opportunity for better abstractions and load balancing
schemes in comparison to ECMP routing.

Traffic Engineering and Network Monitoring. The SDN
control plane has a global, centralized view of the network
and thus also can access network-wide statistics and proper-
ties. With centralized traffic engineering solutions, this data
can be leveraged to find globally optimal path assignments.
Traditional traffic engineering mechanisms such as RSVP-TE
or LDP for MPLS rely on the local, limited view of the
network from the ingress router. We must find ways to use
such network-wide properties with application-specific traffic
engineering solutions effectively.

Data Plane Fault Tolerance and Low-Latency Routing.
Programmability in SDN offers possibilities to implement
custom, fast, and efficient adaptive routing schemes that op-
timize for low end-to-end latency, as well as failure recovery
mechanisms that can be achieved with low communication
overhead and little controller interaction. Nevertheless, it re-
mains unsolved how to pick better paths in real time in the
presence of link failure or congestion, which are scenarios that
are common in wide-area networks.

Packet-Optical Convergence. Multilayer coordination be-
tween the transport and IP/MPLS packet layers of a WAN
is a promising approach towards more optimized and easier
to manage carrier networks. Programmability in software
defined networks lowers the burden for operators to integrate
the network layers. Reachability, performance, and protection
properties from both planes can then be used to optimize traffic
engineering and fault tolerance. However, integrating these two
vastly different systems with their custom control software and
very different experience and expertise of their operators poses
various challenges.

Internet-Scale Attacks. Large-scale, Distributed Denial of
Service (DDoS), attacks have become widespread in today’s
Internet and are one of the major threats for network and
service providers as they may cause severe outages coming
with significant business consequences. A global network van-
tage point and centralized data collection (especially in inter-
domain scenarios) can be valuable to identify optimal locations
to monitor and block large-scale attacks much closer to the
attacker (as opposed to the target) than normally possible.

VII. CONCLUSION

In this paper we gave an overview of the current state of
research in the field of Software Defined Wide-Area Network-
ing along with a discussion of potential future research topics.
We believe, that, especially with growing industry attention
due to ever-growing traffic demands, SD-WAN will remain an
area of high interest over the upcoming years.

While we are still in the beginning phases of research in
this area, we see considerable space for improvement of wide-
area network performance, reliability, and scalability through
Software Defined Networking technologies. In particular, aug-
menting visibility in WANs through monitoring and telemetry
technologies as well as the integration of the control planes
of the packet and optical (transport) layers of WANs may

have significant impact on the future operation of wide-area
networks.

As WAN:Ss typically consist of specialized, expensive, high-
performance hardware and are built incrementally, we, how-
ever, project that the adoption of radical new SDN tech-
nologies and deployments happen at longer time scales than
we have seen it in data center networks, where completely
new deployments are needed more often. Although, through
technologies like PCEP and OpenFlow, a lot of equipment is
already SDN-enabled potentially shortening adoption times.

REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar.
ONOS: Towards an Open, Distributed SDN OS. In Proc. of the Third
Workshop on Hot Topics in Software Defined Networking, 2014.

[2] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe. Design and Implementation of a Routing Control
Platform. In Proc. of the 2nd Conference on Symposium on Networked
Systems Design & Implementation. USENIX Association, 2005.

[3] M. Casado, M. Freedman, and J. Pettit. Ethane: Taking control of the
enterprise. ACM SIGCOMM CCR, 37(4), 2007.

[4] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach
to network control and management. ACM SIGCOMM CCR, 35, 2005.

[51 A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rex-
ford, and L. Vanbever. An Industrial-Scale Software Defined Internet
Exchange Point. In /3th USENIX Symposium on Networked Systems
Design and Implementation, mar 2016.

[6] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett.
SDX: A Software Defined Internet Exchange. In Proc. of the ACM
SIGCOMM 2014 Conference, 2014.

[71 B. Heller, R. Sherwood, and N. McKeown. The Controller Placement
Problem. In Proc. of the 1st Workshop on Hot Topics in Software Defined
Networks, 2012.

[8] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving High Utilization with Software-driven
WAN. In Proc. of the ACM SIGCOMM 2013 Conference, 2013.

[91 S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart,

and A. Vahdat. B4: Experience with a Globally-deployed Software

Defined Wan. In Proc. of the ACM SIGCOMM 2013 Conference, 2013.

X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,

J. Rexford, and R. Wattenhofer. Dynamic Scheduling of Network

Updates. In Proc. of the ACM SIGCOMM 2014 Conference, 2014.

N. P. Katta, J. Rexford, and D. Walker. Incremental consistent updates.

In Proc. of the Second ACM SIGCOMM Workshop on Hot Topics in

Software Defined Networking, HotSDN ’13. ACM, 2013.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:

A distributed control platform for large-scale production networks. In

Proc. of the 9th USENIX Conference on Operating Systems Design and

Implementation. USENIX Association, 2010.

V. Kotronis, X. Dimitropoulos, and B. Ager. Outsourcing the Routing

Control Logic: Better Internet Routing Based on SDN Principles. In

Proc. of the 11th ACM Workshop on Hot Topics in Networks, 2012.

H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz.

zupdate: Updating data center networks with zero loss. In Proc. of the

ACM SIGCOMM 2013 Conference, SIGCOMM ’13. ACM, 2013.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation

in campus networks. SIGCOMM CCR, 38(2), mar 2008.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.

Abstractions for Network Update. In Proc. of the ACM SIGCOMM

2012 Conference, 2012.

D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network

Architecture. ACM SIGCOMM CCR, 37(5), oct 2007.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]



