
4th IEEE Intl. Conference on Software-Defined Systems (SDS 2017) 
May 8-10, 2017, Valencia, Spain

Oliver Michel

SDN in Wide-Area Networks



Global IP Traffic Growth

2

0

50

100

150

200

2015 2016 2017 2018 2019 2020

72.5
88.7

108.5
132.1

160.6

194.4Global IP Traffic [Exabytes/Month]

[Cisco® Visual Networking Index (VNI) 2016]
SDN in Wide-Area Networks | O. Michel, University of Colorado Boulder



Global IP Traffic Growth

2

0

50

100

150

200

2015 2016 2017 2018 2019 2020

72.5
88.7

108.5
132.1

160.6

194.4Global IP Traffic [Exabytes/Month]

52% → 66%
[Cisco® Visual Networking Index (VNI) 2016]

SDN in Wide-Area Networks | O. Michel, University of Colorado Boulder



Global IP Traffic Growth

2

0

50

100

150

200

2015 2016 2017 2018 2019 2020

72.5
88.7

108.5
132.1

160.6

194.4Global IP Traffic [Exabytes/Month]

70% → 82%52% → 66%
[Cisco® Visual Networking Index (VNI) 2016]

SDN in Wide-Area Networks | O. Michel, University of Colorado Boulder



SDN in one Slide

3SDN in Wide-Area Networks | O. Michel, University of Colorado Boulder

Data Plane

Control Plane

centralized, 
consolidated
control



SDN Evolution

4SDN in Wide-Area Networks | O. Michel, University of Colorado Boulder



1. Active Networks 
[Tennenhouse. A survey of active network research. IEEE Comm. ’97]
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SDN in the Data Center
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1. Network Virtualization  
[Koponen. Network Virtualization in Multi-Tenant Data Centers. NSDI 
’14, Keller. LIME. HotNets ’12, Sherwood. FlowVisor. OSDI ’10] 

2. Resource Management  
[Ballani. Oktopus. SIGCOMM ’11, Guo. SecondNet. CoNEXT ‘10]
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• controlled environment 
• dedicated control networks 
• fewer external factors
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• controlled environment 
• dedicated control networks 
• fewer external factors

• fibers in ducts along 
highways/pipelines 

• in-band control 

SDN in Wide-Area Networks | O. Michel, University of Colorado Boulder



• Legacy Equipment, Protocols and 
Practices 

• Different Domains, Stakeholders 

• Interoperability Requirements

WAN Challenges
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Facebook  
Wedge Platform

Juniper Networks 
PTX3000 Core Router



WAN Opportunities
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• tree-like networks with high 
degree of parallel links 

• less expensive copper 
cabling

• mesh network with fewer 
parallel links 

• expensive wide-area fibers 
and optics
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)

Network Topology Abstraction 
Despite the previously mentioned drawbacks, it is generally still desirable to limit the information exchange between the 
transport and IP/MPLS layers to the information that is directly useful to improve TE. This allows for higher scalability in 
large networks, but also addresses any organizational or security concerns that might exist when detailed configuration 
information is shared between both network layers. 

This can be achieved by summarizing the detailed design of the transport layer topology to the minimum set of 
information required to address relevant multilayer TE use cases. The IP/MPLS layer only requires network topology and 
a limited set of metrics from the transport layer, and any more detailed information does not influence or improve traffic 
engineering accuracy. Detailed information on network element connectivity and optical transmission impairments 
of the transport layer can therefore be omitted from the information that is shared between the transport and IP/
MPLS network layers. Instead, the transport layer (server layer) shares an abstracted topology model with the IP/MPLS 
layer (client layer). This abstracted topology model consists of a set of abstract links that represent the end-to-end 
reachability on the server layer, as well as the metrics of these links such as bandwidth, latency, SRLGs, and so on.

Figure 3 shows the abstraction of the transport layer into a set of abstract nodes and links. A link that connects a 
transport-layer node and a node in the IP/MPLS layer is referred to as an access link. Every node on the transport layer 
that has one or more access links to the IP/MPLS layer is defined as an abstract node. Any transport node that does not 
have any access link(s) is omitted from the abstracted topology, as it is not required to define the topology mapping 
between both network layers. 

Abstract links are either actual or potential end-to-end links within the server layer that connect two abstract nodes 
together. An abstract link can be a direct point-to-point connection between two abstract nodes, but it can also 
represent the connectivity through a complex meshed network topology with multiple inline (ROADM) network 
elements. Multiple abstract links can share the same server-layer links, in which case they are part of the same SRLG. 
Any link or node in the server layer that is shared by multiple abstract links can be the basis for a separate SRLG, and an 
abstract link will typically be associated with a string of SRLGs.

Figure 4: Actual transport and IP/MPLS network topology (left); view from the IP/MPLS layer without abstract topology 
exchange (middle); and view from the IP/MPLS layer with abstract topology exchange (right)
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)
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Figure 1: Kandoo’s Two Levels of Controllers. Local

controllers handle frequent events, while a logically

centralized root controller handles rare events.

control applications. As illustrated in Figure 1, several
local controllers are deployed throughout the network; each
of these controllers controls one or a handful of switches.
The root controller, on the other hand, controls all local
controllers.

It is easy to realize local controllers since they are
merely switch proxies for the root controller, and they
do not need the network-wide state. They can even be
implemented directly in OpenFlow switches. Interestingly,
local controllers can linearly scale with the number of
switches in a network. Thus, the control plane scales as long
as we process frequent events in local applications and shield
the root controller from these frequent events. Needless
to say, Kandoo cannot help any control applications that
require network-wide state (even though it does not hurt
them, either). We believe such applications are intrinsically
hard to scale, and solutions like Onix [8] and HyperFlow [18]
provide the right frameworks for running such applications.

Our implementation of Kandoo is completely compliant
with the OpenFlow specifications. Data and control
planes are decoupled in Kandoo. Switches can operate
without having a local controller; control applications
function regardless of their physical location. The main
advantage of Kandoo is that it gives network operators
the freedom to configure the deployment model of control
plane functionalities based on the characteristics of control
applications.

The design and implementation of Kandoo are presented
in Sections 2. Our experiments confirm that Kandoo scales
an order of magnitude better than a normal OpenFlow
network and would lead to more than 90% of events
being processed locally under reasonable assumptions, as
described in Section 3. Applications of Kandoo are not
limited to the evaluation scenarios presented in this paper.
In Section 4, we briefly discuss other potential applications
of Kandoo and compare it to existing solutions. We conclude
our discussion in Section 5.

2. DESIGN AND IMPLEMENTATION

Design objectives. Kandoo is designed with the following
goals in mind. First, Kandoo must be compatible with
OpenFlow: we do not introduce any new data plane
functionality in switches, and, as long as they support
OpenFlow, Kandoo supports them, as well. Second, Kandoo
automatically distributes control applications without any
manual intervention. In other words, Kandoo control
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applications are not aware of how they are deployed in
the network, and application developers can assume their
applications would be run on a centralized OpenFlow
controller. The only extra information Kandoo needs is a
flag showing whether a control application is local or not.

In what follows, we explain Kandoo’s design using a
toy example. We show how Kandoo can be used to
reroute elephant flows in a simple network of three switches
(Figure 2). Our example has two applications: (i) App

detect

,
and (ii) App

reroute

. App
detect

constantly queries each switch
to detect elephant flows. Once an elephant flow is detected,
App

detect

notifies App
reroute

, which in turn may install or
update flow-entries on network switches.

It is extremely challenging, if not impossible, to implement
this application in current OpenFlow networks without
modifying switches [5]. If switches are not modified, a
(logically) centralized control needs to frequently query all
switches, which would place a considerable load on control
channels.

Kandoo Controller. As shown in Figure 3, Kandoo has
a controller component at its core. This component has
the same role as a general OpenFlow controller, but it
has Kandoo-specific extensions for identifying application
requirements, hiding the complexity of the underlying
distributed application model, and propagating events in the
network.

A network controlled by Kandoo has multiple local
controllers and a logically centralized root controller.1 These
controllers collectively form Kandoo’s distributed control
plane. Each switch is controlled by only one Kandoo
controller, and each Kandoo controller can control multiple
switches. If the root controller needs to install flow-entries
on switches of a local controller, it delegates the requests
to the respective local controller. Note that for high
availability, the root controller can register itself as the slave
controller for a specific switch (this behavior is supported in
OpenFlow 1.2 [1]).

1We note that the root controller in Kandoo can itself be
logically/physically distributed. In fact, it is straightforward
to implement Kandoo’s root controller using Onix [8] or
Hyperflow [18].
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to say, Kandoo cannot help any control applications that
require network-wide state (even though it does not hurt
them, either). We believe such applications are intrinsically
hard to scale, and solutions like Onix [8] and HyperFlow [18]
provide the right frameworks for running such applications.

Our implementation of Kandoo is completely compliant
with the OpenFlow specifications. Data and control
planes are decoupled in Kandoo. Switches can operate
without having a local controller; control applications
function regardless of their physical location. The main
advantage of Kandoo is that it gives network operators
the freedom to configure the deployment model of control
plane functionalities based on the characteristics of control
applications.

The design and implementation of Kandoo are presented
in Sections 2. Our experiments confirm that Kandoo scales
an order of magnitude better than a normal OpenFlow
network and would lead to more than 90% of events
being processed locally under reasonable assumptions, as
described in Section 3. Applications of Kandoo are not
limited to the evaluation scenarios presented in this paper.
In Section 4, we briefly discuss other potential applications
of Kandoo and compare it to existing solutions. We conclude
our discussion in Section 5.

2. DESIGN AND IMPLEMENTATION

Design objectives. Kandoo is designed with the following
goals in mind. First, Kandoo must be compatible with
OpenFlow: we do not introduce any new data plane
functionality in switches, and, as long as they support
OpenFlow, Kandoo supports them, as well. Second, Kandoo
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applications are not aware of how they are deployed in
the network, and application developers can assume their
applications would be run on a centralized OpenFlow
controller. The only extra information Kandoo needs is a
flag showing whether a control application is local or not.

In what follows, we explain Kandoo’s design using a
toy example. We show how Kandoo can be used to
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to detect elephant flows. Once an elephant flow is detected,
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, which in turn may install or
update flow-entries on network switches.

It is extremely challenging, if not impossible, to implement
this application in current OpenFlow networks without
modifying switches [5]. If switches are not modified, a
(logically) centralized control needs to frequently query all
switches, which would place a considerable load on control
channels.

Kandoo Controller. As shown in Figure 3, Kandoo has
a controller component at its core. This component has
the same role as a general OpenFlow controller, but it
has Kandoo-specific extensions for identifying application
requirements, hiding the complexity of the underlying
distributed application model, and propagating events in the
network.

A network controlled by Kandoo has multiple local
controllers and a logically centralized root controller.1 These
controllers collectively form Kandoo’s distributed control
plane. Each switch is controlled by only one Kandoo
controller, and each Kandoo controller can control multiple
switches. If the root controller needs to install flow-entries
on switches of a local controller, it delegates the requests
to the respective local controller. Note that for high
availability, the root controller can register itself as the slave
controller for a specific switch (this behavior is supported in
OpenFlow 1.2 [1]).

1We note that the root controller in Kandoo can itself be
logically/physically distributed. In fact, it is straightforward
to implement Kandoo’s root controller using Onix [8] or
Hyperflow [18].
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The Controller Placement Problem 
[Heller ’12] 

• 3 fundamental underlying problems 
1. average-case latency  

minimum k-median 
2. worst-case latency  

minimum k-center 
3. nodes within latency bound  

maximum cover 

• cost/benefit analysis: single or pair  
of controllers often enough
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Figure 1: Optimal placements for 1 and 5 controllers
in the Internet2 OS3E deployment.

Worst-case latency. An alternative metric is worst-case
latency, defined as the maximum node-to-controller propa-
gation delay:

Lwc(S
0
) = max

(v2V )
min

(s2S0)
d(v, s) (2)

where again we seek the minimum S0 ✓ S. The related
optimization problem is minimum k-center [21].

Nodes within a latency bound. Rather than mini-
mizing the average or worst case, we might place controllers
to maximize the number of nodes within a latency bound;
the general version of this problem on arbitrary overlap-
ping sets is called maximum cover [14]. An instance of
this problem includes a number k and a collection of sets
S = S1, S2, ..., Sm, where Si ✓ v1, v2, ..., vn. The objective
is to find a subset S0 ✓ S of sets, such that |

S
Si2S0 Si| is

maximized and |S0| = k. Each set Si comprises all nodes
within a latency bound from a single node.

In the following sections, we compute only average and
worst-case latency, because these metrics consider the dis-
tance to every node, unlike nodes within a latency bound.
Each optimal placement shown in this paper comes from
directly measuring the metrics on all possible combinations
of controllers. This method ensures accurate results, but at
the cost of weeks of CPU time; the complexity is exponential
for k, since brute force must enumerate every combination
of controllers. To scale the analysis to larger networks or
higher k, the facility location problem literature provides
options that trade off solution time and quality, from simple
greedy strategies (pick the next vertex that best minimizes
latency, or pick the vertex farthest away from the current se-
lections) to ones that transform an instance of k-center into
other NP-complete problems like independent set, or even
ones that use branch-and-bound solvers with Integer Linear
Programming. We leave their application to future work.

5. ANALYSIS OF INTERNET2 OS3E
Having defined our metrics, we now ask a series of ques-

tions to understand the benefits of multiple controllers for
the Internet2 OS3E topology [4]. To provide some intuition
for placement considerations, Figure 1 shows optimal place-
ments for k = 1 and k = 5; the higher density of nodes in the
northeast relative to the west leads to a different optimal set
of locations for each metric. For example, to minimize av-
erage latency for k = 1, the controller should go in Chicago,
which balances the high density of east coast cities with the
lower density of cities in the west. To minimize worst-case
latency for k = 1, the controller should go in Kansas City
instead, which is closest to the geographic center of the US.

k = 5!4! 3! 2! 1! k = 5!4! 3!2! 1!

Figure 2: Latency CDFs for all possible controller
combinations for k = [1, 5]: average latency (left),
worst-case latency (right).

Figure 3: Ratio of random choice to optimal.

5.1 How does placement affect latency?
In this topology, placement quality varies widely. A few

placements are pathologically bad, most are mediocre, and
only a small percent approach optimal. Figure 2 shows this
data as cumulative distributions, covering all possible place-
ments for k = 1 to k = 5, with optimal placements at the
bottom. All graphs in this paper show one-way network dis-
tances, with average-optimized values on the left and worst-
case-optimized values on the right. If we simply choose a
placement at random for a small value of k, the average
latency is between 1.4x and 1.7x larger than that of the op-
timal placement, as seen in Figure 3. This ratio is larger
for worst-case latencies; it starts at 1.4x and increases up to
2.5x at k = 12. Spending the cycles to optimize a placement
is worthwhile.

5.2 How many controllers should we use?
It depends. Reducing the average latency to half that at

k = 1 requires three controllers, while the same reduction
for worst-case latency requires four controllers. Assuming
we optimize for one metric, potentially at the expense of the
other, where is the point of diminishing returns? Figure 4
shows the benefit-to-cost ratios for a range of controllers, de-
fined as (lat1/latk)/k. A ratio of 1.0 implies a proportional
reduction; that is, for k controllers, the latency is 1/k of

Figure 4: Cost-benefit ratios: a value of 1.0 indicates
proportional reduction, where k controllers reduce
latency to 1

k of the original one-controller latency.
Higher is better.
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Consistent Network Updates  
[Reitblatt ’12] 

• abstract update operation where a set of  
packets is guaranteed to receive consistent  
treatment 

• per-packet or per-flow consistency 

• implementation on top of NOX
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Dynamic Scheduling of Network 
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[Jin ’14] 

• schedule update order dynamically at 
runtime accounting for runtime variations 

• critical path scheduling through 
dependency graph
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Achieving High Utilization with Software-Driven WAN  
[Hong ’13] 

• central control of  
• bandwidth allocation for different services 
• centrally computing globally-optimal paths 

• frequent data plane updates to maintain high utilization 

• congestion-free updates through scratch capacity
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B4: Experience with a Globally-Deployed Software Defined WAN 
[Jain ’13] 

• integration with legacy routing protocols 

• evaluation in production network over three years
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(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +

(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +

(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,

srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,

srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>

(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +

(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing
The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the
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SDX: A Software Defined Internet Exchange  
[Gupta ’14] 

• BGP inflexibilities: indirect control over forwarding 

• new use-cases: e.g. application specific peering 

• SDN advantages: direct, fine-grained control 

• IXPs: natural starting point
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• high uncertainty and randomness in path quality 
• active probing and SDN control can help to dynamically 

change paths 
• can in part be done in the data plane (e.g., P4 technologies)

Traffic Engineering, Data Plane Fault Tolerance,  
and Low-Latency Routing

20
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• routing over a more complex topology 
• IP layer routing can use transport layer properties for 

CSPF routing

Packet-Optical Convergence
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)

Network Topology Abstraction 
Despite the previously mentioned drawbacks, it is generally still desirable to limit the information exchange between the 
transport and IP/MPLS layers to the information that is directly useful to improve TE. This allows for higher scalability in 
large networks, but also addresses any organizational or security concerns that might exist when detailed configuration 
information is shared between both network layers. 

This can be achieved by summarizing the detailed design of the transport layer topology to the minimum set of 
information required to address relevant multilayer TE use cases. The IP/MPLS layer only requires network topology and 
a limited set of metrics from the transport layer, and any more detailed information does not influence or improve traffic 
engineering accuracy. Detailed information on network element connectivity and optical transmission impairments 
of the transport layer can therefore be omitted from the information that is shared between the transport and IP/
MPLS network layers. Instead, the transport layer (server layer) shares an abstracted topology model with the IP/MPLS 
layer (client layer). This abstracted topology model consists of a set of abstract links that represent the end-to-end 
reachability on the server layer, as well as the metrics of these links such as bandwidth, latency, SRLGs, and so on.

Figure 3 shows the abstraction of the transport layer into a set of abstract nodes and links. A link that connects a 
transport-layer node and a node in the IP/MPLS layer is referred to as an access link. Every node on the transport layer 
that has one or more access links to the IP/MPLS layer is defined as an abstract node. Any transport node that does not 
have any access link(s) is omitted from the abstracted topology, as it is not required to define the topology mapping 
between both network layers. 

Abstract links are either actual or potential end-to-end links within the server layer that connect two abstract nodes 
together. An abstract link can be a direct point-to-point connection between two abstract nodes, but it can also 
represent the connectivity through a complex meshed network topology with multiple inline (ROADM) network 
elements. Multiple abstract links can share the same server-layer links, in which case they are part of the same SRLG. 
Any link or node in the server layer that is shared by multiple abstract links can be the basis for a separate SRLG, and an 
abstract link will typically be associated with a string of SRLGs.

Figure 4: Actual transport and IP/MPLS network topology (left); view from the IP/MPLS layer without abstract topology 
exchange (middle); and view from the IP/MPLS layer with abstract topology exchange (right)
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)

Network Topology Abstraction 
Despite the previously mentioned drawbacks, it is generally still desirable to limit the information exchange between the 
transport and IP/MPLS layers to the information that is directly useful to improve TE. This allows for higher scalability in 
large networks, but also addresses any organizational or security concerns that might exist when detailed configuration 
information is shared between both network layers. 

This can be achieved by summarizing the detailed design of the transport layer topology to the minimum set of 
information required to address relevant multilayer TE use cases. The IP/MPLS layer only requires network topology and 
a limited set of metrics from the transport layer, and any more detailed information does not influence or improve traffic 
engineering accuracy. Detailed information on network element connectivity and optical transmission impairments 
of the transport layer can therefore be omitted from the information that is shared between the transport and IP/
MPLS network layers. Instead, the transport layer (server layer) shares an abstracted topology model with the IP/MPLS 
layer (client layer). This abstracted topology model consists of a set of abstract links that represent the end-to-end 
reachability on the server layer, as well as the metrics of these links such as bandwidth, latency, SRLGs, and so on.

Figure 3 shows the abstraction of the transport layer into a set of abstract nodes and links. A link that connects a 
transport-layer node and a node in the IP/MPLS layer is referred to as an access link. Every node on the transport layer 
that has one or more access links to the IP/MPLS layer is defined as an abstract node. Any transport node that does not 
have any access link(s) is omitted from the abstracted topology, as it is not required to define the topology mapping 
between both network layers. 

Abstract links are either actual or potential end-to-end links within the server layer that connect two abstract nodes 
together. An abstract link can be a direct point-to-point connection between two abstract nodes, but it can also 
represent the connectivity through a complex meshed network topology with multiple inline (ROADM) network 
elements. Multiple abstract links can share the same server-layer links, in which case they are part of the same SRLG. 
Any link or node in the server layer that is shared by multiple abstract links can be the basis for a separate SRLG, and an 
abstract link will typically be associated with a string of SRLGs.

Figure 4: Actual transport and IP/MPLS network topology (left); view from the IP/MPLS layer without abstract topology 
exchange (middle); and view from the IP/MPLS layer with abstract topology exchange (right)
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)

Network Topology Abstraction 
Despite the previously mentioned drawbacks, it is generally still desirable to limit the information exchange between the 
transport and IP/MPLS layers to the information that is directly useful to improve TE. This allows for higher scalability in 
large networks, but also addresses any organizational or security concerns that might exist when detailed configuration 
information is shared between both network layers. 

This can be achieved by summarizing the detailed design of the transport layer topology to the minimum set of 
information required to address relevant multilayer TE use cases. The IP/MPLS layer only requires network topology and 
a limited set of metrics from the transport layer, and any more detailed information does not influence or improve traffic 
engineering accuracy. Detailed information on network element connectivity and optical transmission impairments 
of the transport layer can therefore be omitted from the information that is shared between the transport and IP/
MPLS network layers. Instead, the transport layer (server layer) shares an abstracted topology model with the IP/MPLS 
layer (client layer). This abstracted topology model consists of a set of abstract links that represent the end-to-end 
reachability on the server layer, as well as the metrics of these links such as bandwidth, latency, SRLGs, and so on.

Figure 3 shows the abstraction of the transport layer into a set of abstract nodes and links. A link that connects a 
transport-layer node and a node in the IP/MPLS layer is referred to as an access link. Every node on the transport layer 
that has one or more access links to the IP/MPLS layer is defined as an abstract node. Any transport node that does not 
have any access link(s) is omitted from the abstracted topology, as it is not required to define the topology mapping 
between both network layers. 

Abstract links are either actual or potential end-to-end links within the server layer that connect two abstract nodes 
together. An abstract link can be a direct point-to-point connection between two abstract nodes, but it can also 
represent the connectivity through a complex meshed network topology with multiple inline (ROADM) network 
elements. Multiple abstract links can share the same server-layer links, in which case they are part of the same SRLG. 
Any link or node in the server layer that is shared by multiple abstract links can be the basis for a separate SRLG, and an 
abstract link will typically be associated with a string of SRLGs.

Figure 4: Actual transport and IP/MPLS network topology (left); view from the IP/MPLS layer without abstract topology 
exchange (middle); and view from the IP/MPLS layer with abstract topology exchange (right)
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)

Network Topology Abstraction 
Despite the previously mentioned drawbacks, it is generally still desirable to limit the information exchange between the 
transport and IP/MPLS layers to the information that is directly useful to improve TE. This allows for higher scalability in 
large networks, but also addresses any organizational or security concerns that might exist when detailed configuration 
information is shared between both network layers. 

This can be achieved by summarizing the detailed design of the transport layer topology to the minimum set of 
information required to address relevant multilayer TE use cases. The IP/MPLS layer only requires network topology and 
a limited set of metrics from the transport layer, and any more detailed information does not influence or improve traffic 
engineering accuracy. Detailed information on network element connectivity and optical transmission impairments 
of the transport layer can therefore be omitted from the information that is shared between the transport and IP/
MPLS network layers. Instead, the transport layer (server layer) shares an abstracted topology model with the IP/MPLS 
layer (client layer). This abstracted topology model consists of a set of abstract links that represent the end-to-end 
reachability on the server layer, as well as the metrics of these links such as bandwidth, latency, SRLGs, and so on.

Figure 3 shows the abstraction of the transport layer into a set of abstract nodes and links. A link that connects a 
transport-layer node and a node in the IP/MPLS layer is referred to as an access link. Every node on the transport layer 
that has one or more access links to the IP/MPLS layer is defined as an abstract node. Any transport node that does not 
have any access link(s) is omitted from the abstracted topology, as it is not required to define the topology mapping 
between both network layers. 

Abstract links are either actual or potential end-to-end links within the server layer that connect two abstract nodes 
together. An abstract link can be a direct point-to-point connection between two abstract nodes, but it can also 
represent the connectivity through a complex meshed network topology with multiple inline (ROADM) network 
elements. Multiple abstract links can share the same server-layer links, in which case they are part of the same SRLG. 
Any link or node in the server layer that is shared by multiple abstract links can be the basis for a separate SRLG, and an 
abstract link will typically be associated with a string of SRLGs.

Figure 4: Actual transport and IP/MPLS network topology (left); view from the IP/MPLS layer without abstract topology 
exchange (middle); and view from the IP/MPLS layer with abstract topology exchange (right)
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)

Network Topology Abstraction 
Despite the previously mentioned drawbacks, it is generally still desirable to limit the information exchange between the 
transport and IP/MPLS layers to the information that is directly useful to improve TE. This allows for higher scalability in 
large networks, but also addresses any organizational or security concerns that might exist when detailed configuration 
information is shared between both network layers. 

This can be achieved by summarizing the detailed design of the transport layer topology to the minimum set of 
information required to address relevant multilayer TE use cases. The IP/MPLS layer only requires network topology and 
a limited set of metrics from the transport layer, and any more detailed information does not influence or improve traffic 
engineering accuracy. Detailed information on network element connectivity and optical transmission impairments 
of the transport layer can therefore be omitted from the information that is shared between the transport and IP/
MPLS network layers. Instead, the transport layer (server layer) shares an abstracted topology model with the IP/MPLS 
layer (client layer). This abstracted topology model consists of a set of abstract links that represent the end-to-end 
reachability on the server layer, as well as the metrics of these links such as bandwidth, latency, SRLGs, and so on.

Figure 3 shows the abstraction of the transport layer into a set of abstract nodes and links. A link that connects a 
transport-layer node and a node in the IP/MPLS layer is referred to as an access link. Every node on the transport layer 
that has one or more access links to the IP/MPLS layer is defined as an abstract node. Any transport node that does not 
have any access link(s) is omitted from the abstracted topology, as it is not required to define the topology mapping 
between both network layers. 

Abstract links are either actual or potential end-to-end links within the server layer that connect two abstract nodes 
together. An abstract link can be a direct point-to-point connection between two abstract nodes, but it can also 
represent the connectivity through a complex meshed network topology with multiple inline (ROADM) network 
elements. Multiple abstract links can share the same server-layer links, in which case they are part of the same SRLG. 
Any link or node in the server layer that is shared by multiple abstract links can be the basis for a separate SRLG, and an 
abstract link will typically be associated with a string of SRLGs.

Figure 4: Actual transport and IP/MPLS network topology (left); view from the IP/MPLS layer without abstract topology 
exchange (middle); and view from the IP/MPLS layer with abstract topology exchange (right)
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)

Network Topology Abstraction 
Despite the previously mentioned drawbacks, it is generally still desirable to limit the information exchange between the 
transport and IP/MPLS layers to the information that is directly useful to improve TE. This allows for higher scalability in 
large networks, but also addresses any organizational or security concerns that might exist when detailed configuration 
information is shared between both network layers. 

This can be achieved by summarizing the detailed design of the transport layer topology to the minimum set of 
information required to address relevant multilayer TE use cases. The IP/MPLS layer only requires network topology and 
a limited set of metrics from the transport layer, and any more detailed information does not influence or improve traffic 
engineering accuracy. Detailed information on network element connectivity and optical transmission impairments 
of the transport layer can therefore be omitted from the information that is shared between the transport and IP/
MPLS network layers. Instead, the transport layer (server layer) shares an abstracted topology model with the IP/MPLS 
layer (client layer). This abstracted topology model consists of a set of abstract links that represent the end-to-end 
reachability on the server layer, as well as the metrics of these links such as bandwidth, latency, SRLGs, and so on.

Figure 3 shows the abstraction of the transport layer into a set of abstract nodes and links. A link that connects a 
transport-layer node and a node in the IP/MPLS layer is referred to as an access link. Every node on the transport layer 
that has one or more access links to the IP/MPLS layer is defined as an abstract node. Any transport node that does not 
have any access link(s) is omitted from the abstracted topology, as it is not required to define the topology mapping 
between both network layers. 

Abstract links are either actual or potential end-to-end links within the server layer that connect two abstract nodes 
together. An abstract link can be a direct point-to-point connection between two abstract nodes, but it can also 
represent the connectivity through a complex meshed network topology with multiple inline (ROADM) network 
elements. Multiple abstract links can share the same server-layer links, in which case they are part of the same SRLG. 
Any link or node in the server layer that is shared by multiple abstract links can be the basis for a separate SRLG, and an 
abstract link will typically be associated with a string of SRLGs.

Figure 4: Actual transport and IP/MPLS network topology (left); view from the IP/MPLS layer without abstract topology 
exchange (middle); and view from the IP/MPLS layer with abstract topology exchange (right)
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Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)

Network Topology Abstraction 
Despite the previously mentioned drawbacks, it is generally still desirable to limit the information exchange between the 
transport and IP/MPLS layers to the information that is directly useful to improve TE. This allows for higher scalability in 
large networks, but also addresses any organizational or security concerns that might exist when detailed configuration 
information is shared between both network layers. 

This can be achieved by summarizing the detailed design of the transport layer topology to the minimum set of 
information required to address relevant multilayer TE use cases. The IP/MPLS layer only requires network topology and 
a limited set of metrics from the transport layer, and any more detailed information does not influence or improve traffic 
engineering accuracy. Detailed information on network element connectivity and optical transmission impairments 
of the transport layer can therefore be omitted from the information that is shared between the transport and IP/
MPLS network layers. Instead, the transport layer (server layer) shares an abstracted topology model with the IP/MPLS 
layer (client layer). This abstracted topology model consists of a set of abstract links that represent the end-to-end 
reachability on the server layer, as well as the metrics of these links such as bandwidth, latency, SRLGs, and so on.

Figure 3 shows the abstraction of the transport layer into a set of abstract nodes and links. A link that connects a 
transport-layer node and a node in the IP/MPLS layer is referred to as an access link. Every node on the transport layer 
that has one or more access links to the IP/MPLS layer is defined as an abstract node. Any transport node that does not 
have any access link(s) is omitted from the abstracted topology, as it is not required to define the topology mapping 
between both network layers. 

Abstract links are either actual or potential end-to-end links within the server layer that connect two abstract nodes 
together. An abstract link can be a direct point-to-point connection between two abstract nodes, but it can also 
represent the connectivity through a complex meshed network topology with multiple inline (ROADM) network 
elements. Multiple abstract links can share the same server-layer links, in which case they are part of the same SRLG. 
Any link or node in the server layer that is shared by multiple abstract links can be the basis for a separate SRLG, and an 
abstract link will typically be associated with a string of SRLGs.

Figure 4: Actual transport and IP/MPLS network topology (left); view from the IP/MPLS layer without abstract topology 
exchange (middle); and view from the IP/MPLS layer with abstract topology exchange (right)

Server LayerClient Layer Client Layer

Abstract link

Abstract link

metric:10,
color: green

srig: 1

Access
link

Access
link

Client-link

Abstract 
node

Abstract 
node

Server Layer Client Layer

Access
link

Access
link

Client-link

Abstract 
node

Abstract 
node

srig: 2

srig: 3

srig: 1

? S
R

LG
-1

S
R

LG
-2

6

White PaperNorthStar Controller—Multilayer SDN Coordination and Optimization

©2015, Juniper Networks, Inc.

Figure 3: Abstraction of the transport-layer topology: point-to-point link (left), and meshed network (right)

Network Topology Abstraction 
Despite the previously mentioned drawbacks, it is generally still desirable to limit the information exchange between the 
transport and IP/MPLS layers to the information that is directly useful to improve TE. This allows for higher scalability in 
large networks, but also addresses any organizational or security concerns that might exist when detailed configuration 
information is shared between both network layers. 

This can be achieved by summarizing the detailed design of the transport layer topology to the minimum set of 
information required to address relevant multilayer TE use cases. The IP/MPLS layer only requires network topology and 
a limited set of metrics from the transport layer, and any more detailed information does not influence or improve traffic 
engineering accuracy. Detailed information on network element connectivity and optical transmission impairments 
of the transport layer can therefore be omitted from the information that is shared between the transport and IP/
MPLS network layers. Instead, the transport layer (server layer) shares an abstracted topology model with the IP/MPLS 
layer (client layer). This abstracted topology model consists of a set of abstract links that represent the end-to-end 
reachability on the server layer, as well as the metrics of these links such as bandwidth, latency, SRLGs, and so on.

Figure 3 shows the abstraction of the transport layer into a set of abstract nodes and links. A link that connects a 
transport-layer node and a node in the IP/MPLS layer is referred to as an access link. Every node on the transport layer 
that has one or more access links to the IP/MPLS layer is defined as an abstract node. Any transport node that does not 
have any access link(s) is omitted from the abstracted topology, as it is not required to define the topology mapping 
between both network layers. 

Abstract links are either actual or potential end-to-end links within the server layer that connect two abstract nodes 
together. An abstract link can be a direct point-to-point connection between two abstract nodes, but it can also 
represent the connectivity through a complex meshed network topology with multiple inline (ROADM) network 
elements. Multiple abstract links can share the same server-layer links, in which case they are part of the same SRLG. 
Any link or node in the server layer that is shared by multiple abstract links can be the basis for a separate SRLG, and an 
abstract link will typically be associated with a string of SRLGs.

Figure 4: Actual transport and IP/MPLS network topology (left); view from the IP/MPLS layer without abstract topology 
exchange (middle); and view from the IP/MPLS layer with abstract topology exchange (right)
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• use centralized logic for analysis and mitigation of 
Internet-scale attacks across domains 

• fine-grained filtering with programmability



• WANs gaining important with mobile traffic rising 

• some deployments, typically within domains 

• still space for extensive research

Conclusion
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• rapid traffic growth in mid-‘90s, slow standardization 
through IETF

• programmability

• code embedded in packets

• no clear use-cases or applications

Active Networks
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• networks rapidly increasing in size and complexity

• scalability issues

• manageability issues

Control- and Data Plane Separation
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Routing Control Platform (RCP) 
[Caesar ’05] 

• routers peer with RCP 

• mimics full iBGP mesh

Scalability

29

Autonomous System

RCP

• single best route advertised via standard iBGP 

• intrinsic correctness of full mesh with scalability of RR 

• no route oscillations or forwarding loops



Manageability

30

set interfaces ge-1/2/0 unit 0
  family inet address 172.16.1.1/24 interface gigabitethernet 2

  ip address 172.16.1.1 255.255.255.0

OSPF BGP RIP IS-IS
VLAN SNMP RSVP LDP



• novel architectural pattern 
for networks based on 
layers [Greenberg ’05] 

• four different layers 

• control/data separation

Manageability

31

Autonomous System

“Alice can talk to Bob”
“Traffic from Eve should be blocked”

• high-level network policies through centralized controller [Casado ’07] 

• simple switch architecture 

• evaluated in real-world deployment



• need for standardized control between 
control and data plane 

• generalization of networking 
equipment

Control Protocols

32

configure
rules

retrieve events,
statistics

define
policy



• OpenFlow [McKeown ’08] 

• open protocol that gives applications 
control over a switches data plane 

• designed around a set of header match 
fields and forwarding actions 

• forwarding abstraction balancing… 

1. general match/action (TCAM model) 

2. fixed-function switch ASICs 

• not the only protocol

Control Protocols

33

configure
rules

retrieve events,
statistics

define
policy



An Industrial-Scale Software Defined Internet Exchange Point 
[Gupta ’16]

34

• fundamental scaling problems in SDX 
architecture 

• composition of rules requires large state 

• more rules than policies defined needed 
due to BGP congruence checking



• global network view shared across all 
instances 

• scale-out and failure resiliency 

• each switch connected to primary OF 
Manager 

• new primary selected at failure through 
consensus protocol by Zookeeper 

• distributed, eventually consistent network 
graph through Cassandra backend

Open Network Operating System [Berde ’14]

35

ONOS

OF ManagerOF Manager

Distributed Registry
Apache Zookeeper

Network Graph
Apache Cassandra

ApplicationApplication



NorthStar Controller
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• Multi-Layer WAN Traffic Engineering Solution 

• Controller-Controller Interface



Expanding beyond a single Domain

37
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(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +

(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +

(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,

srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,

srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>

(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +

(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing
The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the
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modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +

(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +

(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,

srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,

srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>

(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +

(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing
The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the
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