
PIQ: Persistent InteractiveQueries
for Network Security Analytics

Oliver Michel

University of Colorado Boulder

oliver.michel@colorado.edu

John Sonchack

University of Pennsylvania

jsonch@seas.upenn.edu

Eric Keller

University of Colorado Boulder

eric.keller@colorado.edu

Jonathan M. Smith

University of Pennsylvania

jms@cis.upenn.edu

Abstract
Network monitoring is an increasingly important task in the

operation of today’s large and complex computer networks.

In recent years, technologies leveraging software defined net-

working and programmable hardware have been proposed.

These innovations enable operators to get fine-grained in-

sight into every single packet traversing their network at

high rates. They generate packet or flow records of all or a

subset of traffic in the network and send them to an analytics

system that runs specific applications to detect performance

or security issues at line rate in a live manner.

Unexplored, however, remains the area of detailed, inter-

active, and retrospective analysis of network records for

debugging or auditing purposes. This is likely due to tech-

nical challenges in storing and querying large amounts of

network monitoring data efficiently. In this work, we study

these challenges in more detail. In particular, we explore

recent advances in time series databases and find that these

systems not only scale to millions of records per second but

also allow for expressive queries significantly simplifying

practical network debugging and data analysis in the context

of computer network monitoring.

CCS Concepts
• Networks→ Network monitoring; Network security;

ACM Reference Format:
Oliver Michel, John Sonchack, Eric Keller, and Jonathan M. Smith.

2019. PIQ: Persistent Interactive Queries for Network Security An-

alytics. In ACM International Workshop on Security in Software De-
fined Networks & Network Function Virtualization (SDN-NFVSec ’19),
March 27, 2019, Richardson, TX, USA. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3309194.3309197

1 Introduction
Continuous network monitoring is essential to the op-

eration of data center, enterprise, and wide area networks.

Network monitoring enables operators to detect security

issues, misconfigurations, equipment failure and perform

traffic engineering [7, 8, 12, 13, 21, 24]. Today’s networks are

larger and more complex than ever before; they carry more

traffic, run more advanced applications and are continuing

to grow. Therefore, careful and detailed network monitoring

is increasingly imperative.

With the introduction ofmodern programmable switches [6,

9, 20], there is new opportunity to meet these challenges.

In fact, network monitoring has become one of the ‘killer

apps’ for modern programmable switches. These network

monitoring systems can generally be organized in two parts:

telemetry systems and analytics systems. Telemetry systems

leverage the programmability of switches to collect and re-

port real time measurements in the data path at rates and

fidelity not possible before [1, 15, 22, 23]. Analytics systems

focus on the practical analysis of this data for performance

monitoring, intrusion detection, and failure detection [11, 14].

They use advances in parallel software-based data processing,

such as stream processing as well as kernel bypass technolo-

gies for data input [2, 10, 16, 19].

Together, telemetry and analytics systems provide fine-

grained visibility into live network conditions that is use-

ful for many applications. But equally important and un-

addressed by current systems is visibility into past network
conditions. There are a variety of reasons why such infor-

mation matters. For some applications, such as network au-

diting, historic information is simply required. For others,

such as debugging, it is essential to not only identify that

the network is in a certain state, but also how it got into that

state. In many cases, historic data is necessary because anal-

ysis is too expensive to do in real time, and many times need

human interaction to investigate. For example, in security

systems, a common scenario is to identify anomalies in real

time and tag related network monitoring records (packet

or flow records) for offline analysis using a heavier weight

analysis system or assistance from a network administrator.

All of the above applications rely on retrospective queries
about the network, which requires some level of record per-

sistence. This poses a significant challenge given the volume

and velocity of record-based monitoring data in networks.

The challenge is not only due to the shear amount of records

that modern telemetry systems can generate, but also due to

https://doi.org/10.1145/3309194.3309197


the high rates (hundreds of millions of packets per second) at

which today’s wide-area and data center networks operate.

In this paper, we analyze this challenge in more detail and

take first steps towards a telemetry system that supports

not only live queries, but also retrospective queries. We ex-

plore the requirements of such a system, identify time-series

databases as a promising starting point, and design strategies

for using modern database engines with state of the art net-

work telemetry and analytics systems. Finally, we sketch the

design of a next generation network monitoring architecture,

centered around programmable hardware that is composed

of telemetry, analytics, and persistence planes, that supports

high performance expressive and retrospective queries.

2 Background
Databases have been successfully deployed and used for

decades in a wide range of applications and are the backbone

of systems across all industries. Traditionally, databases have

been used for online transaction processing workloads, like

in the financial, production and transportation industries.

Advances over the past 10-15 years in data transmission

rates and storage capacity have driven the demand for a

revolution in database and data analytics technologies. These

workloads that are significantly higher in both velocity and

volume are commonly referred to as Big Data workloads. In
this section, we look at this spectrum of database technology

to understand suitability for network monitoring.

2.1 Database Models
Although initially database systems were designed around

the rigidmathematical relationalmodel, the emergence of Big
Data has led to new database designs straying from this orig-

inal model. These databases are often referred to as NoSQL
databases as their relational counterparts use the Structured

Query Language (SQL) as their interface.

Relational database management systems (RDBMS) re-

quire data to be in a fixed format that often needs to be

broken up in several relations in order to fit in this model.

Especially for modern workloads, this process comes with

significant performance drawbacks due to frequent joins. On

the other hand, relational databases are extremely powerful:

They allow for complex data models, can enforce rigid in-

tegrity constraints, follow a strong transactional model and

have a very expressive query interface through SQL.

NoSQL databases generally do not require this fixed stor-

age format and are, as a result, easier to adapt to custom,

irregular and unstructured data. Additionally, they are op-

timized for large volumes of data and often have better I/O

performance and horizontal scalability properties than their

relational counterparts. This is mostly due to the lack of fea-

tures that SQL-based systems implement and enforce in the

database layer, such as integrity constraints.

2.2 Time-Series Databases
Alongside the emergence of Big Data applications, the

widespread deployment of IoT and general sensor data ap-

plications has triggered a shift from traditional transactional

database applications to applications where data has a strong

temporal character. A common example for such data is

measurement-related data where an observation is associ-

ated with a time. A key characteristic of such workloads is

that this data is typically only written once, never updated

and from that point on exclusively read (queried). As a result,

database systems optimized for this type of workload and

equipped with time-series related functions were proposed.

These systems are referred to as time-series databases.

As network monitoring data normally consists of mea-

surements of some sort that are associated with their time

of observation, time-series databases are a natural fit for

our problem domain. We experimented with several systems

and soon realized that an expressive query interface, as well

as join operations across data stored at different levels of

granularity (e.g.,packet records vs. flow records) are essential

requirements for designing a practical and flexible persis-

tence scheme for network monitoring data.

Unfortunately, the vast majority of time-series optimized

databases are implemented as some sort of non-relational

key-value store. While this is suitable for multiple indepen-

dent series of measurements that are never put in context

with each other, this is not suitable for network monitoring

data (see section 5). TimescaleDB [25] provides a promis-

ing alternative: A relational database management system

that is optimized for time-series data. Timescale is an ex-

tension for the PostgreSQL RDBMS, a database system that

has been used for decades and is an industry standard be-

cause of its many features, reliability and scalability [17].

TimescaleDB provides high write throughput, good scala-

bility and most importantly does not compromise on any

traditional database features by providing a full-featured SQL

query interface and allowing for constraints and joins.

2.3 Database Requirements for Network
Record Persistence

TimescaleDB appears to be a good match for the applica-

tion of network monitoring. In the remainder of this paper

we seek to evaluate the suitability of TimescaleDB for this

application. In particular, we answer three key questions:

Is the query interface expressiveness enough? A net-

work administrator must be able to quickly query the data-

base system using a flexible, fast, and intuitive query system

that meets the needs of interactive analysis of historical net-

work telemetry data. In Section 3 we provide examples of

such queries.

At what rates can we insert data? Inserting data into the

database is a key challenge that limits the applicability of



the database. Network monitoring records are commonly

generated at rates of several million per second. As a result,

a database system must be optimized for high write rates,

and we need to understand the degree of aggregation which

is required to meet the insert limits. In Section 4, we evaluate

optimizations for write performance into TimescaleDB.

Atwhat scale canwe store data?At these high insert rates,
massive amounts of data can accumulate in short periods

of time. The database system must be scalable enough to

cope with data volumes of billions of records. This, coupled

with the aggregation levels, then determine the window of

time which network operators can interactively query. In

section 5, we analyze the storage requirements for network

records at different granularities.

3 Querying Network Records
Before even discussing performance, we look at the ex-

pressiveness of TimescaleDB in the context of network mon-

itoring. We wish to run retrospective queries and allow for

exploratory data analysis on network records.

3.1 Network Queries
To demonstrate the flexibility of SQL for network monitor-

ing records, we show a set of example queries highlighting

different language features of SQL and TimescaleDB:

1. Bin packet and byte counts in 1s time intervals: Timescale’s

time_bucket() function is useful to make large amounts of

time-series data manageable. For example, this query can be

used to generate a traffic graph over time.

SELECT time_bucket('1 seconds', ts_us) AS interval,
SUM(pkt_count) AS pkt_count, SUM(byte_count) AS byte_count
FROM gpv GROUP BY interval ORDER BY interval ASC

2. Count the number of packets per IP address from a particular
IP subnet within the last hour: PostgreSQL’s INET datatypes al-
lows specifying queries that are not limited to a direct match

on an IP address but can efficiently query at the granularity

of IP prefixes.

SELECT ip_src, SUM(pkt_count) AS pkt_count FROM gpv WHERE ip_src
<< inet '60.70.0.0/16' AND gpv.ts_us > NOW() - interval '1 hours'
GROUP BY ip_src

3. List packets that came from a particular IP subnet: A JOIN
allows to query data across relations and in this case can

result in per-packet records including individual timestamps,

packet sizes, or TCP information. If the underlying packet

records were already deleted, this query would still succeed

but only show aggregate information such as total byte and

packet counts.

SELECT * FROM (gpv RIGHT JOIN pkt ON gpv.gpv_id = pkt.gpv_id)
WHERE gpv.ip_src << inet '60.70.0.0/16'

3.2 Retrospective Queries and Debugging
In section 1 we explained how network analytics suites

are optimized to process large amounts of data quickly. This

is important for the timely detection of intrusions or other

issues within the network. In the case of an anomaly, an

analytics system can generate alerts but does not have the

ability to inspect the problem.

For example, a network record stream processor could

detect an unusually high queue occupancy and queuing de-

lay in a single queue of a switch; a problem often caused by

incorrect load balancing schemes or an adversarial traffic

pattern. We now show how retrospective network queries

can in this scenario help a network administrator to deter-

mine if indeed a misconfiguration is causing this effect or

whether the network is simply at capacity.

As a first step it is of value to determine what packets

actually were in the queue while the alert was raised:

SELECT DISTINCT gpv.ip_src, gpv.ip_dst, gpv.ip_proto, gpv.tp_src,
gpv.tp_dst FROM (gpv RIGHT JOIN pkt ON gpv.gpv_id = pkt.gpv_id)
WHERE pkt.ingress_ts >= '2018-02-19 12:59:11.595' AND
pkt.ingress_ts < '2018-02-19 12:59:11.600' AND pkt.queue_id = '5'

This query returns a list of flows whose packets were in

the respective queue at this specified time. The administrator

sees that the majority of packets were destined for particular

IP subnet, a cluster that serves video content. The routing

configuration for this subnet shows, that it is reachable via

an ECMP group. After determining the links that are part of

this group, the following query can be used to get insight

into the distribution of packets across these links:

SELECT pkt.queue_id, COUNT(pkt.queue_id) FROM (gpv RIGHT JOIN pkt
ON gpv.gpv_id = pkt.gpv_id) WHERE gpv.ip_dst << inet '53.231/16'
AND pkt.queue_id IN (4,5,6,7) GROUP BY pkt.queue_id;

If the returned distribution is roughly uniform, the load

balancing scheme works, otherwise there is an issue with

this particular ECMP group and its hashing algorithm.

While the stream processor could include a digest of the

packets which were in the particular queue at the time, the

problem may be located well beyond this single queue and

finding the root cause can require a more in-depth analy-

sis of the state of the network. Record persistence and an

interactive query system allow an operator to analyze the

problem in more detail across different network devices with

the goal of identifying the underlying issue.

Furthermore, as all of these queries, took less than one

second to complete on a 200M packet record dataset, this

method is perfectly suitable for interactive debugging and

exploratory data analysis. While query performance might

degrade with larger databases, there are ways to overcome

this issue through precompiling queries [3] or using special-

ized indices or views for frequently performed queries.

4 Inserting Network Records
A key challenge for the design and implementation of

network record based monitoring systems lies in dealing

with high traffic rates of today’s networks. Database sys-

tems, as previously explained, are usually not optimized for

these write-heavy workloads and represent a performance

bottleneck. Therefore, the database write performance deter-

mines how many network records can be saved in a given

amount of time and at which level of aggregation they can

be stored for network analysis. We evaluate TimescaleDB

in this regard and show optimizations that vastly improve

insert performance.



insert copy

10000 50000 100000 200000 10000 50000 100000 200000
0.0

0.1

0.2

0.3

batch size [#records]

m
ea

n 
th

ro
ug

hp
ut

 [M
 tu

pl
es

/s
]

Figure 1: GPV INSERT vs. COPY performance

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80
tuples in database [M]

co
py

 th
ro

gh
pu

t [
M

 tu
pl

es
/s

]

pg

ts

Figure 2: GPV COPY performance as a function of
database size for PostgreSQL and TimescaleDB

The injection process (commonly implemented through

SQL INSERT statements) is associated with complex underly-

ing logic and tasks, such as updating indices, checking con-

straints, partitioning data, and running triggers. These tasks

can significantly hurt injection performance. TimescaleDB

helps in this case as it is optimized for mainly appending

data as opposed to performing random insert and update

operations. TimescaleDB organizes data in chunks indexed

by timestamp that fit into memory. Each chunk has its own

index. This means that the individual indices are small and

efficiently manageable. Chunks get written to disk asyn-

chronously only after a chunk has been filled entirely.

The insert performance can further be optimized by not

using complex data constraints and injecting data in chunks

using the SQL COPY statement as opposed to using INSERT.
PostgreSQL (Timescale’s underlying database) has a custom

binary format and allows for fast inserts of chunks of data

in this format. Details on this feature and the format can

be found in [18]. We compared the performance of COPY
and INSERT for different chunk sizes. Figure 1 shows the

mean throughput of injecting 10 million rows. At a batch

size of 100K packets using COPY, we achieve an average write

throughput of 360K records per second. This is over an order

of magnitude higher compared to using INSERT.
We also compared the write-performance of TimescaleDB

and standard PostgreSQL with respect to the number of tu-

ples already inserted. Figure 2 shows the results of this exper-

iment.We can see that PostgreSQL’s write performance is ini-

tially higher but degrades with database size. TimescaleDB’s

performance only slightly decreases with database size.

Field Length [Byte] Description

ts_us 8 absolute timestamp in µs
gpv_id 8 unique identifier

flow_key 26 IP 5-tuple

- ip_src 8 IP source address

- ip_dst 8 IP destination address

- tp_src 4 source port

- tp_dst 4 destination port

- ip_proto 2 IP Protocol

sample_id 2 sample identifier

tap_id 2 tap identifier (e.g., switch)
duration 4 GPV duration in µs
pkt_count 2 number of packets in GPV

byte_count 3 number of Bytes in GPV

Table 1: Grouped Packet Vector Format
Field Length [Byte] Description

gpv_id 8 unique identifier (foreign key)

ts_us 8 absolute timestamp in µs
queue_id 2 unique queue ID

tcp_flags 2 TCP Flags

egress_delta 4 ingress - egress timestamp

byte_count 2 total packet length

queue_depth 2 experienced queue length

ip_id 2 IP identification field

tcp_seq 4 TCP sequence number

Table 2: Packet Record Format

While a write throughput of 300K - 400K records is still

over an order of magnitude lower than packet rates in high-

speed networks, we explain in section 6 that this rate can

actually be sufficient for most applications since not neces-

sarily every packet needs to be stored at the highest level

of granularity. Using flow-based aggregation schemes, com-

pression rates of 30-40×, while maintaining a good level of

detail per flow, are possible. We further elaborate on this in

the next section. Additionally, we believe that these write

rates can be further improved by optimizing PostgreSQL

storage and transaction settings, as well as inserting records

using multiple threads simultaneously.

5 Storing Network Records
As our goal is to enable interactive retrospective queries,

the storage of the data base is critical in determining the time

window under which we can query. In order to maintain the

ability to analyze stored network records using expressive

and powerful queries, a carefully designed storage format is

imperative. Furthermore, given the volume of records that

can be generated, compression and data retention strategies

must be addressed. In this section we detail the data format

and analyze storage tradeoffs an operator can take for a

particular use case.

5.1 Grouped Packet Vectors
We use the grouped packet vector format (GPV), proposed

in [23], as the record format for our prototype implementa-

tion. A grouped packet vector contains an IP 5-tuple flow key

and a variable length vector of feature tuples from sequential



0

10

20

30

8192 16348 32763 65526 131052 262104 524288
cache height [#slots]

m
ea

n 
G

P
V

 le
ng

th
 [#

pa
ck

et
s]

cache width

8

16

32

64

(a) mean GPV length

0

1

2

8192 16348 32763 65526 131052 262104 524288
cache height [#slots]

99
%

ile
 e

vi
ct

 la
te

nc
y 

[s
]

cache width

8

16

32

64

(b) 99%ile eviction latency

Figure 3: GPV generation properties depending on cache configuration

0

1

10

100

1,000

0 250 500 750 1000
number of packet records in database [M]

ta
bl

e 
si

ze
 (

lo
g.

) 
[G

B
]

PKT

GPV−16

GPV−32

GPV−64

Figure 4: Timescale physical database size for differ-
ent relations as a function of packets stored

telemetry plane analytics plane

long-running queries interactive queries

Network Administrator

record
collection

Network

e.g., PFE-enabled
switch

database

query interface

stream processor

secondary
queries

network data analysis receive alerts

Figure 5: Overall System Architecture

packets in the respective flow. A GPV effectively is a hybrid

between a packet record and a flow record. It inherits some

of the best attributes of both formats and also compresses

packet records by deduplicating the IP 5-tuple.

In order to query GPV data in a relational database system

in a flexible manner, the GPV format must be normalized

through two relations, one for the GPV header (flow data) and

one for the packet features. The columns for the two relations,

including their storage size requirements in TimescaleDB,

are listed in Table 1 and in Table 2.

As opposed to proper flow record generation using TCP

flags and timeouts, we generate GPVs using a simple hash

table-based cache data structure as we use this format mainly

for reasons of data compression. The cache is organized in a

number of slots (cache height) with a fixed amount of packet

features that fit in each slot (cache width). The slot index

is determined through a hash function from the IP 5-tuple.

Individual packets are then appended to the packet feature

vector. A GPV is evicted from the cache when either a hash

collision happens or when the feature vector is full. This

data structure can be implemented in hardware and further

optimized using secondary caches for high-activity flows.

For this work, however, we use a simple single cache im-

plementation in software. The cache performance (in terms

of eviction ratio) is directly dependent on the cache dimen-

sions (number of slots and slot width). Figure 3 depicts the

effects on the eviction behavior for different cache dimen-

sions through experimentation using real-worldWANpacket

traces [5]. The larger the cache is in either dimension, the

higher the achieved compression ratio (GPV length) is (see

figure 3a). On the other hand, a large cache requires more

memory and also extends the eviction latency, i.e., the time

a record spends in the cache before being evicted (see fig-

ure 3b). This can be important when running applications on

live data. As a result, the cache dimensions must be carefully

chosen for the application’s requirements.

For the remainder of this paper, we chose a cache height of

2
18 = 262144 with a width of 32. With these parameters, the

size of the cache in memory is 206 MB. In our simulations,

the mean GPV length is 20.82 with a mean eviction latency

of 0.85 seconds and a 99%ile latency of 2.60 seconds.

5.2 Storage and Record Retention
Storing data in a database generally requires more storage

space than a custom, optimized binary format. In this case,

a GPV header in C++ only occupies 48 Bytes, whereas its

representation in TimescaleDB occupies 56 Bytes. A packet

record requires 34 Bytes in Timescale, but only 24 Bytes

in our custom storage format. The difference mainly stems

from use of different data types, as well as added foreign

key columns. Additionally, TimescaleDB maintains indices

and other metadata for tables. We measured the physical

disk storage required to store 100 million records of each

type. Together with all metadata and indices, a GPV header

occupies 122.7 Bytes and a packet record 97.8 Bytes. In either

case. this is a more than 2× increase over the binary format.

The storage requirements grow linearly with record count.

Looking at these numbers at scale, we can see that using

our format and database layout, 1 billion packet records re-

quire approximately 1TB of disk storage. In addition, each

packet record belongs to a GPV header which occupies stor-

age. The storage requirements of the GPV header in respect

to the total number of records depends on the average GPV



length. At an average GPV length of 16, a billion packet

records require approximately 76GB of GPV records. At an

average length of 64, the requirement goes down to roughly

19GB. The total database size is the sum of the sizes of the

pkt and gpv relations. Figure 4 shows these results in detail.

In our experiments, we inserted up to around 1 billion

records into TimescaleDB. While we did not go beyond this,

Timescale has been successfully used with database sizes

beyond 500 billion records [4]. Our dataset of a 10Gbit/s

wide-area link had an average packet rate of 330K/s [5].

Given a storage budget of 500 billion rows, at this packet

rate, TimescaleDB could store around 17 days of packet-level

data.

In a practical deployment we imagine that an operator

would not necessarily store every single packet record for-

ever. For example, a data retention policy could be defined

in which every GPV header is stored and packet records

are only retained within a storage budget. Various different

policies are imaginable. We leave this discussion open for

future research. Our relational model is designed such that

most queries would still succeed when a GPV header does

not reference any packet records anymore. The query would

then return already aggregated instead of per-packet data.

6 End-to-End Design of a Retrospective
Monitoring System

As the examples and preliminary results in this paper have

demonstrated, retrospective network queries are a powerful

abstraction. It is also practical for next generation monitor-

ing systems to support. Figure 5 illustrates the architecture

of such a system, which would leverage the components

described in this paper along with other recent work. At a

high level, the system can be conceptualized as three planes:

(1) A telemetry plane that collects network records at high

rates in the network and sends them to a software platform.

(2) A real time analytics plane for long-running network

queries, that leverages scale out stream processing engine

to scan network records and detect problems. Suspicious

packets are marked for later analysis.

(3) The component explored in this paper: a persistence plane

and query subsystem in which network records can be saved

over longer times at different granularities and retrospec-

tively queried to further investigate issues in the network

either by a human or by secondary analysis systems.

We envision a general persistence plane with adapters to

consume data from both the telemetry and analytics planes.

In the simplest case, input could be truncated packet headers

cloned from network switches. Most commodity switches

support these features, which are sufficient to enable many of

the examples described in this paper. The persistence plane

could also consume input frommore advanced telemetry sys-

tems that leverage programmable forwarding engines, e.g.,

P4 hardware. This would provide two benefits: additional

data about switch state, e.g., queue depths; and reduced net-

work overhead, e.g.,by preprocessing packet headers into

GPVs in the data plane [23]. More advanced still, the persis-

tence plane could consume input from the real-time analytics

plane. There are at least two use cases for such integration.

First, alerts from the real-time analytics system could trig-

ger more advanced retrospective queries. For example, an

alert indicating high queue depths or a dropped packet could

automatically invoke the diagnostics queries described in

the prior section. Additionally, the real-time analytics plane

can serve as a preprocessor, normalizing record formats and

prefiltering out data that does not need to be stored.

7 Conclusion
Network monitoring is increasingly important in the op-

eration of today’s large and complex network. With the

introduction of modern programmable switches, there are

more opportunities than ever before to collect high fidelity

measurements. As recent real time telemetry and analytics

systems have demonstrated, this can provide visibility into

network conditions that enable powerful new monitoring

applicaitons. But often, visibility into current network con-

ditions is not enough. For debuggers, security systems, and

many other applications, it is critical to also have visibility

into past network conditions.

In this paper, we identify this need for retrospective net-
work analytics and show how such a system can be realized.

We leverage recent trends in database technology, namely

time-series databases. While most time series databases are

implemented as NoSQL, key-value stores with custom query

interfaces, we motivate why for this workload, a traditional

relational database model is better-suited. We study the feasi-

bility of using a relational model based time-series database

(TimescaleDB) for network monitoring records.

We identify the main challenges of this approach and

design strategies and optimizations to tailor an existing data-

base engine for retrospective network analytics. These strate-

gies improve system efficiency significantly and the resulting

prototype serves as both a demonstration of feasibility and

an important first step towards a complete solution. With

this prototype, we explore features of retrospective queries

and motivating use cases. Finally, we sketch the end-to-end

architecture of a next generation monitoring system that

leverages programmable switches, advanced telemetry sys-

tems, and our contributions to support high performance

and expressive retrospective queries.

Acknowledgements
This research was supported in part by the National Science

Foundation under grants 1700527 (SDI-CSCS) and 1652698

(CAREER).



References
[1] Barefoot Deep Insight. https://www.barefootnetworks.com/products/

brief-deep-insight/.

[2] Data Plane Development Kit. https://dpdk.org.

[3] DB Toaster. https://dbtoaster.github.io.

[4] Talk: Rearchitecting a SQL Database for Time-Series Data. https:

//www.youtube.com/watch?v=eQKbbCg0NqE.

[5] Trace statistics for caida passive oc48 and oc192 traces – 2015-02-19.

https://www.caida.org/data/passive/tracestats/.

[6] P4: Programming Protocol-independent Packet Processors. SIGCOMM
Comput. Commun. Rev. 44, 3 (jul 2014), 87–95.

[7] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and

Vahdat, A. Hedera: Dynamic flow scheduling for data center net-

works. In 7th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 10) (2010), vol. 7, pp. 19–19.

[8] Benson, T., Anand, A., Akella, A., and Zhang, M. Microte: Fine

grained traffic engineering for data centers. In Proceedings of the Sev-
enth COnference on emerging Networking EXperiments and Technologies
(2011), ACM, p. 8.

[9] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Iz-

zard, M., Mujica, F., and Horowitz, M. Forwarding Metamorphosis:

Fast Programmable Match-action Processing in Hardware for SDN.

In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM
(2013), SIGCOMM ’13, ACM, pp. 99–110.

[10] Dobrescu, M., Egi, N., Argyraki, K., Chun, B.-G., Fall, K., Iannac-

cone, G., Knies, A., Manesh, M., and Ratnasamy, S. Routebricks:

Exploiting parallelism to scale software routers. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles (New
York, NY, USA, 2009), SOSP ’09, ACM, pp. 15–28.

[11] Gupta, A., Harrison, R., Canini, M., Feamster, N., Rexford, J., and

Willinger, W. Sonata: Query-driven Streaming Network Telemetry.

In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (New York, NY, USA, 2018), SIGCOMM ’18,

ACM, pp. 357–371.

[12] Handigol, N., Heller, B., Jeyakumar, V., Mazières, D., and McKe-

own, N. I know what your packet did last hop: Using packet histories

to troubleshoot networks. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14) (2014), vol. 14, pp. 71–85.

[13] Li, Y., Miao, R., Kim, C., and Yu, M. FlowRadar: A Better NetFlow

for Data Centers. In Proceedings of the 13th USENIX Conference on
Networked Systems Design and Implementation (Santa Clara, CA, 2016),

USENIX Association, pp. 311–324.

[14] Michel, O., Keller, E., Sonchack, J., and Smith, J. M. Packet-level

analytics in software without compromises. In Proceedings of the 10th
USENIX Workshop on Hot Topics in Cloud Computing (Boston, MA,

2018), USENIX Association.

[15] Narayana, S., Sivaraman, A., and Nathan, V. Language-Directed

Hardware Design for Network PerformanceMonitoring. In Proceedings
of SIGCOMM ’17 (Los Angeles, CA, 2017), ACM, pp. 85–98.

[16] Panda, A., Han, S., Jang, K., Walls, M., Ratnasamy, S., and Shenker,

S. Netbricks: Taking the v out of nfv. In OSDI (2016), pp. 203–216.
[17] Postgres. Postgresql database system. https://www.postgresql.org.

[18] Postgres. Postgresql documentation: Copy. https:

//www.postgresql.org/docs/current/sql-copy.html.

[19] Rizzo, L. netmap: A Novel Framework for Fast Packet I/O. In 2012
USENIX Annual Technical Conference (USENIX ATC 12) (Boston, MA,

2012), USENIX Association, pp. 101–112.

[20] Sivaraman, A., Cheung, A., Budiu, M., Kim, C., Alizadeh, M., Bal-

akrishnan, H., Varghese, G., McKeown, N., and Licking, S. Packet

transactions: High-level programming for line-rate switches. In Pro-
ceedings of the 2016 ACM SIGCOMMConference (2016), ACM, pp. 15–28.

[21] So-In, C. A survey of network traffic monitoring and analysis tools.

Cse 576m computer system analysis project, Washington University in
St. Louis (2009).

[22] Sonchack, J., Aviv, A. J., Keller, E., and Smith, J. M. Turboflow:

Information Rich Flow Record Generation on Commodity Switches. In

Proceedings of the Thirteenth EuroSys Conference (New York, NY, USA,

2018), EuroSys ’18, ACM, pp. 11:1—-11:16.

[23] Sonchack, J., Michel, O., Aviv, A. J., Keller, E., and Smith, J. M.

Scaling hardware accelerated monitoring to concurrent and dynamic

queries with *flow. In Proceedings of the 2018 USENIX Annual Technical
Conference (ATC) (Boston, MA, 2018), USENIX Association.

[24] Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., and

Stiller, B. An overview of ip flow-based intrusion detection. IEEE
communications surveys & tutorials 12, 3 (2010), 343–356.

[25] Timescale. Timescale db. https://www.timescale.com/.

https://www.barefootnetworks.com/products/brief-deep-insight/
https://www.barefootnetworks.com/products/brief-deep-insight/
https://dpdk.org
https://dbtoaster.github.io
https://www.youtube.com/watch?v=eQKbbCg0NqE
https://www.youtube.com/watch?v=eQKbbCg0NqE
https://www.caida.org/data/passive/trace_stats/
https://www.postgresql.org
https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html
https://www.timescale.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Database Models
	2.2 Time-Series Databases
	2.3 Database Requirements for Network Record Persistence

	3 Querying Network Records
	3.1 Network Queries
	3.2 Retrospective Queries and Debugging

	4 Inserting Network Records
	5 Storing Network Records
	5.1 Grouped Packet Vectors
	5.2 Storage and Record Retention

	6 End-to-End Design of a Retrospective Monitoring System
	7 Conclusion
	References

