
Scalable, Hardware-Accelerated Network Analytics

Oliver Michel (student)
University of Colorado Boulder

oliver.michel@colorado.edu

John Sonchack (student)
University of Pennsylvania

jsonch@seas.upenn.edu

Adam J. Aviv
United States Naval Academy

aviv@usna.edu

Eric Keller
University of Colorado Boulder

eric.keller@colorado.edu

1 Introduction
Monitoring is a crucial part of network operations, espe-
cially as networks grow larger and more complex. Moti-
vated by this, many recent works have introduced switch
hardware and software to export fine-grained traffic and
performance data [3], e.g., per-packet features such as
timestamps or queue depths. While the fine granular-
ity gives operators unprecedented visibility into their
networks, processing and extracting useful information
from the data, i.e., analytics, remains a challenge.

Currently, the networking community lacks an effi-
cient, scalable, and easily deployable platform for cus-
tom analytics of fine-grained monitoring data. Commer-
cial systems, such as [1], are tightly integrated with spe-
cific data plane implementations, have limited extensi-
bility, and require heavyweight deployments. Solutions
built from general purpose platforms for large scale data
processing, e.g., Spark, require complex deployment and
careful optimization. In addition to the clear drawbacks
for operators, these approaches also make things more
challenging for developers because they do not facilitate
modularity or code re-use. This is particularly impor-
tant for network analytics, since many applications are
likely to perform similar types of processing, e.g., group-
ing packet timestamps by a key.

Toward the goal of high-performance per-packet ana-
lytics in a practical, easy to operate environment, we pro-
pose an architecture and streaming framework in which
monitoring applications can be built using reusable com-
ponents that perform computations. Analytics appli-
cations in this framework are C++ applications which
link against a library that provides processing primi-
tives, as well as a runtime environment that provides
high-performance, parallel computation. Through ex-
periments, we identified that these applications are pri-
marily I/O-bound due to frequent memory operations on
small chunks of data, i.e., per-packet data. To further
improve processing performance, we propose selective
hardware offload of analytics functions, that can be ag-

gregated (while preserving per-packet information) be-
fore being processed in software. To implement this pat-
tern, we leverage programmable Smart NICs, that can
perform initial processing at high data rates. Through
initial experiments, we showed that both our software
streaming framework, as well as our hardware offload
mechanism, scale almost linearly with core count to high
traffic rates. This makes per-packet analytics at packet
rates commonly observed in ISP backbones or data cen-
ter networks feasible. Our overall system architecture is
depicted in Figure 1 and consists of two components: (1)
an initial processing step in hardware, and (2) a scalable
and modular streaming analytics framework in software.

2 Practical Fine-Grained Perfor-
mance Analytics

We implemented a streaming analytics framework for
network performance monitoring based on a C++ Paral-
lel Computation Library [2]. This framework serves two
main purposes. First, it provides means to easily paral-
lelize complex applications through a stream processing
abstraction consisting of computation kernels and self-
tuning queues connecting these kernels. This allows high
throughput without requiring manual optimizations. Sec-
ond, we provide a library of standard kernels that imple-
ment common functionality, like map, group-by, filter,
and join to perform computations on a packet or flow data
stream. Applications can be written in C++ and compiled
to lightweight statically compiled binaries that are easy
to ship or deploy. For example, a simple filter kernel can
be defined like this:

Filter<Flow> filter_tcp([](auto& flow) {
return flow.key().ip_proto == 6; });

Applications can then be composed of a simple topology
of such kernels:

raft::map m;
m += flow_import >> filter_tcp
>> tcp_out_of_seq >> printer;

m.exe();



Analytics System
TCP Flowlet Size Histogram

DNS DoS Detect
Smart NIC

Group
ByMap

Threshold

Visualization

Archive

Network Devices

TCP Flowlet
Aggregation

DNS Filter

Packet Headers

Alert

Figure 1: System architecture showing preprocessing steps and two concurrently running analytics applications

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1  2  3  4  5  6  7  8  9  10

T
h
ro
u
g
h
p
u
t 
[K

 
f
o
w
s
/s
]

Number of Cores

Figure 2: Streaming Library Performance

Through experiments, we have shown that these com-
pute kernels can scale almost linearly with CPU core
count. Using proper load-balancing schemes to paral-
lelize computation, we can thus achieve high processing
rates. Our example application inspected every single
packet of flow records doing simple counter operations.
The flow records were synthesized from a CAIDA In-
ternet backbone trace and had an average packet count
of 27 per flow. Figure 2 shows the number of flows per
second that our system can process in this manner on a
24 Core Intel Xeon E5-2620 3rd Generation CPU. Our
system and its dependencies can be easily packaged in a
600MB Docker image, that can easily be deployed and
run in almost any environment.

3 Hardware Acceleration
An important trend in networking is the commoditiza-
tion of programmable hardware accelerators for packet
processing, e.g., Barefoot Tofino switches or Netronome
NFP Smart NICs, which are both priced comparably to
their commodity non-programmable alternatives. We be-
lieve that these devices can significantly reduce the work-
load of the analytics software and, in a NIC form factor,
are well-suited to deployment in analytics servers. We
envision an optional preprocessing stage in the hardware
for dynamic, runtime-configurable filtering and aggrega-
tion, that can selectively pass complete flow records, sin-
gle packet records, or some intermediate flow represen-
tation to the software processing system.

To explore the potential, our prototype includes a mod-
ule that uses a NFP-4000 to aggregate per-packet records
into flowlet records, using a cache-based approach sim-
ilar to Marple [3]. The module reduces the workload
of the stream processor by lowering the rate of events
it must process, which our initial evaluation showed

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40  45  50

T
h
ro
u
g
h
p
u
t 
[M

 
p
a
c
k
e
ts
/s
]

Number of Cores

Figure 3: Smart NIC Performance

was a bottleneck for most streaming analytics software.
The prototype implementation was written in P4 and
showed near-linear scaling behavior per NFP-4000 core
and overall high packet throughput (Figure 3). In a 10
Gb/s core Internet router trace, a 1 MB cache in the NIC
reduced the software’s event rate by a factor of 10 1.

4 Conclusion
In this paper, we presented early work on a novel ap-
proach to high-performance network monitoring using a
combination of highly optimized parallel computation in
software and hardware offload as a mechanism to pre-
process network data at high rates. Furthermore, we pre-
sented a programming model for monitoring applications
based on reusable and composable operators that enable
network operators to write high performing network an-
alytics applications easily and to deploy these applica-
tions on general purpose hardware. These two compo-
nents provide a modular, scalable, and, most importantly,
lightweight system that can scale to Internet backbone or
data center traffic rates.

References
[1] Cisco Tetration Analytics. https://www.cisco.

com/c/en/us/products/data-center-analytics

[2] Beard, Jonathan et.al. 2016. RaftLib: A C++ Tem-
plate Library for High Performance Stream Paral-
lel Processing. In Intl. Journal of HPC Applications.
2016.

[3] Srinivas Narayana et.al. 2017. Language-Directed
Hardware Design for Network Performance Moni-
toring. In Proceedings of SIGCOMM 17.

1CAIDA 02/2015 Chicago Direction A: https://www.caida.
org/data/passive/trace_stats/

2


